

Search for the Chiral Magnetic Effect Using Event Shape Selection with BES-II data at STAR

Zhiwan Xu (for the STAR Collaboration) University of California, Los Angeles Nov 26, 2023

Chiral Magnetic Effect

- **QCD** vacuum transition leads to nonzero topological charge. 0

Kharzeev, Pisarski, Tytgat, PRL 81(1998) 512 Voloshin, PRC 70 (2004) 057901

• Chirality imbalance of quarks coupled with strong magnetic field induces an electric charge separation along the B field direction (violates local Parity Symmetry and CP Symmetry)

Experimental Observables

$$\frac{dN_{\pm}}{d\varphi} \propto 1 + 2v_1 \cos(\varphi - \Psi_{\rm RP}) + 2a_1^{\pm} s$$

Parity Odd, can not directly observe $\propto \mu_5 B$

Parity Even, sensitive to charge separation -

$$\Delta \gamma^{112} = \gamma^{OS} - \gamma^{SS} = \lambda$$

BKG indicator: $\gamma^{132} = \langle \cos(\varphi_1 - 3\varphi_2 + 2\Psi_{RP}) \rangle$

- - More correlated with the B field
 - Minimizes the nonflow background

To control the v₂-related BKG, various approaches have been developed.

2023 DNP/JPS Meeting

In experiment, Spectator Plane serves as a proxy for the Reaction Plane: $\Psi_1 \rightarrow \Psi_{RP}$

Search for the CME in Isobar collisions

Goal is to look for the signal difference in CME between isobar systems (Ru+Ru and Zr+Zr) 0

Lessons from Isobar blind analysis:

- The v₂-related background is large. 0
- The possible CME signal is small. 0
- plane Ψ_1)

• Using participant plane (TPC) entails large nonflow BKG (can be avoided with spectator

Search for the CME at LHC

0 **POI)** to control over eccentricity

Why Search for the CME with Au+Au Beam Energy Scan?

- Prerequisites for CME changes with energy. Advantage: longer lasting B field. 0 Possible to see the turn-off effect where QGP signatures vanishes 0
- \circ We need a more effective method to mitigate v₂-BKG.

Goal is to extrapolate to zero-flow limit by categorizing events based on event shapes q₂ (non-

Important points from ESE at ALICE and CMS:

- At LHC energies, $\Delta \gamma^{112}$ could be explained by v₂ related BKG.
- **Event Shape Engineering (ESE) based on** 0 variables excluding POI is unstable.

Schematic Diagram of Event Shape

- - participant zone geometry expected to be long range in rapidity

2023 DNP/JPS Meeting

Z. Xu et al, arXiv:2307.14997

Observable based on final-state particles (v_2 , flow vector q_2) has contributions from: • emission pattern fluctuations – more localized, less correlated over rapidity

Data experience large event-by-event fluctuations - main contribution

> H. Petersen and B. Müller, Phys. Rev. C 88, 044918

Event Shape Selection

Goal is to directly extrapolate to zero-flow limit by utilizing event shapes of POI that are 0 sensitive to both emission pattern and geometry

Event shape variable

Flow vector

$$q_2^2 = \frac{\left(\sum_{i=1}^N \sin 2\varphi_i\right)^2 + \left(\sum_{i=1}^N \cos 2\varphi_i\right)^2}{N(1 + N\langle v_2 \rangle)}$$

2023 DNP/JPS Meeting

Flow background in the CME measurement

Z. Xu et al, arXiv:2307.14997

v₂^{res} not suitable for Event Shape Selection

- Under moderate CME signal input, AVFD demonstrates that using v₂res could cause severe 0 over-subtraction.
- 0

It indicates that using pair v_2 (average of charged pairs) may cause small over-subtraction.

Simulation results for Event Shape Selection Z. Xu et al, arXiv:2307.14997

- With AVFD, the optimal ESS recipe (c) accurately matches the input true CME signal.
- With AMPT, all ESS schemes seem to over-estimate the BKG (same ordering as AVFD).

Mixed combinations further suppress residual BKG: intercepts follow an ordering (a)>(b)>(c)>(d)

Beam Energy Scan at RHIC

	BES-I	
$\sqrt{S_{NN}}$ (GeV)	Events (10 ⁶)	Year
62.4	46	2010
39	86	2010
27	30	2011
19.6	15	2011
14.6	13	2014
11.5	7	2010
9.2	0.3	2008
7.7	4	2010

Baryon Che

$\mu_{\rm R}(mev)$	mical	Potential	$-\mu_{\rm B}(MeV)$
--------------------	-------	-----------	---------------------

	BES-II	
$\sqrt{S_{NN}}$ (GeV)	Events (10 ⁶)	Yea
27	555	201
19.6	478	201
14.6	324	201
11.5	230	202
9.2	160	202
7.7	101	202

Statistics:

• 20 times higher

Detector Upgrades:

• 2018 EPD : high EP resolution into spectator region (2.1<η<5.1)

Beam Energy Scan I

- $\circ \Delta \gamma^{112}$ measurement using participant plane (TPC) entails large nonflow BKG.
- ΔH disappears at the lowest and highest energies. The vanishing at 7.7 GeV indicates the domination of hadronic interactions over partonic ones.

BES-II provides unique opportunity to search for the CME!

11.5 GeV Au+Au7.7 GeV Au + Au(g) (h) 60 08060 40204020

(c)

(d)

39 GeV Au + Au

2023 DNP/JPS Meeting

 \mathbf{EPD}

Beam Energy Scan II - Event Shape Selection

2023 DNP/JPS Meeting

The ESS is applied to different centralities. 0

• Ordering of four $\Delta \gamma_{ESS}^{112}$ follows prediction from model.

Beam Energy Scan II - Event Shape Selection

2023 DNP/JPS Meeting

Beam Energy Scan II - Event Shape Selection

- Results from the optimal ESS (c), pair q^2 and single v_2 :
 - At 27 GeV, uncertainties dominate.

 - At 7.7 GeV, the current results favor the zero-CME scenario.

2023 DNP/JPS Meeting

• At 14.6 GeV, the ratio for 20-50% centrality has a 3 σ significance of CME sensitive $\Delta \gamma_{ESS}^{112}$

STAR

Beam Energy Dependence of CME observable

2023 DNP/JPS Meeting

Subtraction of v₂-BKG

- After v₂-BKG subtraction with Event Shape 0 variables, and nonflow supression with Ψ_1 , obtained $\Delta \gamma_{ESS}^{112} / \langle \Delta \gamma^{112} \rangle$ that shows
- \circ At 14.6 and 19.6 GeV, a 3 σ effect.
 - At 7.7 GeV and 27 GeV, consistent with zero based upon the large statistic error.
- More BES-II data analyses for 11.5 GeV and 9.2 GeV are on the way.

Summary

- The search for the CME addresses an intrinsic topological property of QCD.
- We use a novel Event Shape Selection method to extrapolate $\Delta \gamma^{112}$ to zero-flow limit, and Ο use spectator plane Ψ_1 to minimize the nonflow background. • The CME-sensitive $\Delta \gamma_{ESS}^{112} / \langle \Delta \gamma^{112} \rangle$ after BKG subtraction is finite (3 σ) in Au+Au at 14.6 and 19.6 GeV.
- Above 14.6 GeV, our finding favors the scenario that the chirality imbalance and magnetic filed may coexist to induce the CME.
- Approaching 7.7 GeV, current result hints zero CME within uncertainties.

STAR

Thank you!