

Strange and Multi-strange Hadron Production in O+O Collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV

Iris Ponce for the STAR Collaboration

Yale University DNP 2024 October 7 - 10th

Supported in part by:

Iris Ponce - DNP 2024

QCD and the **QGP**

- At high temperatures QCD matter becomes a new state of matter called the Quark-Gluon plasma (QGP).
 - Deconfined strongly coupled fluid.

QCD and the QGP

- At high temperatures QCD matter becomes a new state of matter called the Quark-Gluon plasma (QGP).
 - Deconfined strongly coupled fluid.
- Its existence was predicted in 1975 and experimentally discovered in the early 2000s.
- The QGP is predicted to have existed in the early universe
 - \circ First μ s after the Big Bang

Strangeness Enhancement and the QGP

- Strangeness enhancement was one of the first observables predicted as a signature of the QGP.
- The thermal production of s-s quark pairs is favorable in the QGP since the s-s masses are close to the QGP transition temperature ~157 MeV.

P. Koch, et al. Phys. Rep. 142, 167 (1986).

Strangeness Enhancement and the QGP

- Strangeness enhancement was one of the first observables predicted as a signature of the QGP.
- The thermal production of s-s quark pairs is favorable in the QGP since the s-s masses are close to the QGP transition temperature ~157 MeV.
 - 2 x m_s ~192 MeV
 - There are abundant thermal gluons in the QGP medium.
- The production of multi-strange (Ξ[±],Ω[±]) hadrons are more sensitive to the existence of QGP.

P. Koch, et al. Phys. Rep. 142, 167 (1986).

 A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A) at TeV collision energies.

TAR PRI 108 072301 (20

STAR

- A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A) at TeV collision energies.
 - STAR has observed a similar trend.
- Oxygen is one of the smallest ions collided at RHIC.

- A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A) at TeV collision energies.
 - STAR has observed a similar 0 trend.
- Oxygen is one of the smallest ions collided at RHIC.

Central

Iris Ponce - DNP 2024

Peripheral

lvl< 1.0

unexplored region

O+O Run Information at STAR

- The Solenoidal Tracker at RHIC (STAR) has been operating since 2000.
- From 2018 on, STAR had two detector upgrades: iTPC and eTOF
 - \circ Improved coverage: From $|\eta| < 1.0 => |\eta| < 1.5$
 - Lower p_{τ} coverage 125 MeV => 60 MeV
 - Extended PID with eTOF

Picture: Alex & Maria Schmah Q. Xu. (STAR). 8th Workshop on Hadron Physics (2016)

O+O Run Information at STAR

- The Solenoidal Tracker at RHIC (STAR) has been operating since 2000.
- From 2018 on, STAR had two detector upgrades: iTPC and eTOF
 - Improved coverage: From $|\eta| < 1.0 \Rightarrow |\eta| < 1.5$
 - Lower p_{τ} coverage 125 MeV => 60 MeV
 - Extended PID with eTOF
- There are ~650M O+O minimum bias events total at $\sqrt{s_{NN}}$ = 200 GeV.
 - ¹/₄ of the O+O run was taken with the magnetic field reversed.
 - Testing calibration and TPC distortions

Picture: Alex & Maria Schmah Q. Xu. (STAR). 8th Workshop on Hadron Physics (2016)

Reconstructing Lambdas and Signal Extraction

- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
 - Standard reconstruction for decayed particles.

Reconstructing Lambdas and Signal Extraction

- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
 - Standard reconstruction for decayed particles.

For the Λ Signal Extraction:

- The signal (without background subtraction) region is [μ-3σ,μ+3σ], and the background region is [0 to μ-3σ, μ+3σ to 1.135 GeV/c²].
- Fitting function: 2nd poly (for background + double Gauss function (signal).

Corrected p_{τ} spectrum for Λ 's in Central O+O Collisions

 The p_T spectra is calculated from the Λ's invariant mass distributions in different momentum ranges.

Corrected p_{τ} spectrum for Λ 's in Central O+O Collisions

- The p_T spectra is calculated from the Λ's invariant mass distributions in different momentum ranges.
- The pT spectra is corrected using the reconstruction efficiency with Monte Carlo simulations.
 - MC_{reco} /MC_{input}
- The Λ p_T spectra is the average of both magnetic field configurations.

Comparing the O+O yield to similar Collision Systems

Most central O+O collisions have a similar < N_{part} > as peripheral Au+Au collisions.

Comparing the O+O yield to similar Collision Systems

Most central O+O collisions have a similar < N_{part} > as peripheral Au+Au collisions.

Integrating the Λ p_T spectrum from 0 to ∞ the yield (dN/dy) is 0.86 ± 0.05 ± 0.22

**O+O yield is not feed-down corrected.

Next Steps for Analysis

- Extend the analysis to other hyperons.
 - \circ The raw \textbf{p}_{T} spectra are pending the corrections.
- Calculate the yields from corrected spectra.
 - \circ Extend to lower multiplicities to start filling the gaps in $\rm N_{ch}$

Raw Transverse momenta distribution for O+O at $\sqrt{s_{_{NN}}}$ = 200 GeV

There is good coverage through 0 - 80% centralities for multi-strange hadrons.

Next Steps for Analysis

- Extend the analysis to other hyperons.
 - \circ The raw \textbf{p}_{T} spectra are pending the corrections.
- Calculate the yields from corrected spectra.
 - \circ Extend to lower multiplicities to start filling the gaps in $\rm N_{ch}$
- Apply feed-down corrections to spectra for yield calculations.
 - Compute the pion/hyperon ratio in the low multiplicity region
- Use thermal model for freeze-out parameter (e.g. μ_B , T_{ch}) extraction.

Raw Transverse momenta distribution for O+O at $\sqrt{s_{_{NN}}}$ = 200 GeV

There is good coverage through 0 - 80% centralities for multi-strange hadrons.

Conclusions

- The O+O at √s_{NN} = 200 GeV is a newer data set for STAR.
- The O+O dataset can fill in the gaps in the low multiplicity regions in the ratio of strange hadron production to the pion yield for the STAR data.
- We presented the first yield calculation for Λ's in the 0-10% centrality region for O+O.
- With the great statistics there will be interesting results for the near future!

Backup

Reconstructing Lambdas and Signal Extraction

- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
 - Standard reconstruction for decayed particles.
 - Initially developed for other heavy ion experiments but was adapted in 2018 for STAR.

Particles To Be Reconstructed

These are some strange hadrons and mesons that are short-lived and decay via hadronic channels!

Particle	Strangeness	Mass~(MeV)	Decay Mode	Branching Ratio
$\phi(1020)$	0	$1,\!019.461\pm 0.020$	K^+K^-	$49.5 \ \%$
K_s^0	± 1	$497.611 {\pm} 0.013$	$\pi^+\pi^-$	69.20~%
Λ	-1	$1,\!115.683{\pm}0.006$	$p\pi^-$	64.1~%
[I] -	-2	$1{,}321.71{\pm}0.07$	$\Lambda\pi^-$	99.887%
Ω^{-}	-3	$1,\!672.45{\pm}0.29$	ΛK^-	67.8%

PDG Live

- This presentation will focus on Λ 's.
- The Ξ^- , Ω^- , ϕ , and K^0_{S} results will follow soon.

Full spectra with BES yields

Weak Decay Modes - Feynman Diagrams

https://ppd.fnal.gov/experiments/e871/public/phys_slides.html

Coalescence

https://www.nature.com/articles/s41467-024-45474-x/figures/1