

Strange and Multi-strange Hadron Production in O+O Collisions at $\sqrt{s_{NN}}$ = 200 GeV

Iris Ponce for the STAR Collaboration

Yale University DNP 2024 October 7 - 10th

Supported in part by:

Iris Ponce - DNP 2024

QCD and the QGP

- At high temperatures QCD matter becomes a new state of matter called the Quark-Gluon plasma (QGP).
	- Deconfined strongly coupled fluid.

QCD and the QGP

- At high temperatures QCD matter becomes a new state of matter called the Quark-Gluon plasma (QGP).
	- Deconfined strongly coupled fluid.
- Its existence was predicted in 1975 and experimentally discovered in the early 2000s.
- The QGP is predicted to have existed in the early universe
	- \circ First us after the Big Bang

Strangeness Enhancement and the QGP

- Strangeness enhancement was one of the first observables predicted as a signature of the QGP.
- The thermal production of $s-\overline{s}$ quark pairs is favorable in the QGP since the \overline{s} -s masses are close to the QGP transition temperature ~157 MeV.

[P. Koch, et al. Phys. Rep. 142, 167 \(1986\).](https://www.sciencedirect.com/science/article/abs/pii/0370157386900967?via%3Dihub)

Strangeness Enhancement and the QGP

- Strangeness enhancement was one of the first observables predicted as a signature of the QGP.
- \bullet The thermal production of s- \overline{s} quark pairs is favorable in the QGP since the \overline{s} -s masses are close to the QGP transition temperature ~157 MeV.
	- \circ 2 x m_s ~192 MeV
	- There are abundant thermal gluons in the QGP medium.
- The production of multi-strange $(\Xi^{\pm}, \Omega^{\pm})$ hadrons are more sensitive to the existence of QGP.

[P. Koch, et al. Phys. Rep. 142, 167 \(1986\).](https://www.sciencedirect.com/science/article/abs/pii/0370157386900967?via%3Dihub)

Motivation

● A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A) at TeV collision energies.

Motivation

[STAR. PRC 83, 034910 \(2011\)](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.83.034910) [STAR. PRC 83, 024901 \(2011\)](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.83.024901) [STAR. PRC 77, 044908 \(2008\)](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.77.044908) [STAR PRL. 98, 062301 \(2007\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.062301) **STAR**

[STAR. PRL. 108, 072301 \(2012\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.072301)

STAR

Motivation

- A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A) at TeV collision energies.
	- STAR has observed a similar trend.
- Oxygen is one of the smallest ions collided at RHIC.

Motivation

- A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A) at TeV collision energies.
	- STAR has observed a similar trend.
- Oxygen is one of the smallest ions collided at RHIC.

[STAR PRL. 98, 062301 \(2007\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.062301)

Iris Ponce - DNP 2024

O+O Run Information at STAR

- The Solenoidal Tracker at RHIC (STAR) has been operating since 2000.
- From 2018 on, STAR had two detector upgrades: iTPC and eTOF
	- Improved coverage: From $|\eta|$ < 1.0 => $|\eta|$ < 1.5
	- \circ Lower p_T coverage 125 MeV => 60 MeV
	- Extended PID with eTOF

Picture: Alex & Maria Schmah [Q. Xu. \(STAR\). 8th Workshop on Hadron Physics \(2016\)](https://indico.cern.ch/event/502161/contributions/2261768/attachments/1322921/1984683/04_iTPC_CCNU_2016_Xu.pdf)

O+O Run Information at STAR

- The Solenoidal Tracker at RHIC (STAR) has been operating since 2000.
- From 2018 on, STAR had two detector upgrades: iTPC and eTOF
	- Improved coverage: From $|\eta|$ < 1.0 => $|\eta|$ < 1.5
	- \circ Lower p_T coverage 125 MeV => 60 MeV
	- Extended PID with eTOF
- There are \sim 650M O+O minimum bias events total at $\sqrt{s_{NN}}$ = 200 GeV.
	- $\frac{1}{4}$ of the O+O run was taken with the magnetic field reversed.
		- Testing calibration and TPC distortions

Picture: Alex & Maria Schmah [Q. Xu. \(STAR\). 8th Workshop on Hadron Physics \(2016\)](https://indico.cern.ch/event/502161/contributions/2261768/attachments/1322921/1984683/04_iTPC_CCNU_2016_Xu.pdf)

Reconstructing Lambdas and Signal Extraction

- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
	- Standard reconstruction for decayed particles.

Reconstructing Lambdas and Signal Extraction

- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
	- Standard reconstruction for decayed particles.

For the Λ Signal Extraction:

- The signal (without background subtraction) region is $[\mu - 3\sigma, \mu + 3\sigma]$, and the background region is [0 to μ -3 σ , μ +3 σ to 1.135 GeV/c²].
- Fitting function: 2nd poly (for background + double Gauss function (signal).

Corrected **p_T** spectrum for **A**'s in Central O+O Collisions

• The p_T spectra is calculated from the Λ 's invariant mass distributions
in different momentum ranges.
 $\frac{1}{\epsilon_0}$
 $\frac{1}{\epsilon_1}$
 $\frac{1}{\epsilon_2}$
 $\frac{1}{\epsilon$ in different momentum ranges.

Corrected **p_T** spectrum for **A**'s in Central O+O Collisions

- The p_T spectra is calculated from the Λ 's invariant mass distributions
in different momentum ranges.
The pT spectra is corrected using
the reconotraction of the theorem is the reconotraction of the theorem is the second that $\sum_{i=1}^{n} a_i$ in different momentum ranges.
- The pT spectra is corrected using the reconstruction efficiency with Monte Carlo simulations.
	- \circ **MC**_{reco} /**MC**_{input}
- The Λ p_T spectra is the average of both magnetic field configurations.

Comparing the O+O yield to similar Collision Systems

Most central O+O collisions have a similar $< N_{part}$ as peripheral Au+Au collisions.

Comparing the O+O yield to similar Collision Systems

Most central O+O collisions have a similar $< N_{part}$ as peripheral Au+Au collisions.

Integrating the Λ p_{τ} spectrum from 0 to ∞ the yield (dN/dy) is $0.86 \pm 0.05 \pm 0.22$

**O+O yield is not feed-down corrected.

Next Steps for Analysis

- Extend the analysis to other hyperons.
	- \circ The raw p_T spectra are pending the corrections.
- Calculate the yields from corrected spectra.
- alculate the yields from corrected

bectra.
 $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ = Extend to lower multiplicities to start filling

the gaps in N_{ch}

a a letter and a letter start is a letter start filling the gaps in N_{ch}

Raw Transverse momenta distribution for O+O at $\sqrt{s_{NN}}$ = 200 GeV

There is good coverage through 0 - 80% centralities for multi-strange hadrons.

Next Steps for Analysis

- Extend the analysis to other hyperons.
	- \circ The raw p_T spectra are pending the corrections.
- Calculate the yields from corrected spectra.
- alculate the yields from corrected

bectra.
 $\begin{array}{r} \n\text{S}^{\text{c}}_{\text{c}}\n\end{array}$
 $\begin{array}{r} \n\text{S}^{\text{c}}_{\text{c}}\n\end{array}$
 $\begin{array}{r} \n\text{S}^{\text{c}}_{\text{c}}\n\end{array}$

the gaps in N_{ch} the gaps in N_{ch}
- Apply feed-down corrections to spectra for yield calculations.
	- Compute the pion/hyperon ratio in the low multiplicity region
- Use thermal model for freeze-out parameter (e.g. $\mu_{_{\rm B}}$, ${\sf T}_{_{\sf ch}}$) extraction.

Raw Transverse momenta distribution for O+O at $\sqrt{s_{NN}}$ = 200 GeV

There is good coverage through 0 - 80% centralities for multi-strange hadrons.

Conclusions

- The O+O at $\sqrt{s_{NN}}$ = 200 GeV is a newer data set for STAR.
- The $O+O$ dataset can fill in the gaps in the low multiplicity regions in the ratio of strange hadron production to the pion yield for the STAR data.
- We presented the first yield calculation for Λ 's in the 0-10% centrality region for O+O.
- With the great statistics there will be interesting results for the near future!

Backup

Reconstructing Lambdas and Signal Extraction

- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
	- Standard reconstruction for decayed particles.
	- Initially developed for other heavy ion experiments but was adapted in 2018 for STAR.

Particles To Be Reconstructed

These are some strange hadrons and mesons that are short-lived and decay via hadronic channels!

[PDG Live](https://pdglive.lbl.gov/Viewer.action)

- \bullet This presentation will focus on Λ 's.
- The Ξ^- , Ω^- , ϕ , and $K^0_{\ S}$ results will follow soon.

Full spectra with BES yields

Weak Decay Modes - Feynman Diagrams

https://ppd.fnal.gov/experiments/e871/public/phys_slides.html

Coalescence

[https://www.nature.com/articles/s41467-024-](https://www.nature.com/articles/s41467-024-45474-x/figures/1) [45474-x/figures/1](https://www.nature.com/articles/s41467-024-45474-x/figures/1)