

small-Strip Thin Gap Chamber as a STAR Forward tracker

Prashanth Shanmuganathan

(for the STAR Collaboration)

Office of Science

STAR Forward Upgrade

Relativistic Heavy Ion Collider (RHIC) Long Island, NY

STAR Experiment (The Solenoidal Tracker At RHIC)

- STAR Forward Upgrade (2021+)
 - p+p: Proton transverse spin structure
 - p+A: gluon saturation at small-x
 - A+A: initial state conditions

- Measures
 - ➢ h+/-, e+/-(with good e/h discrimination)
 - > Photons, π^0 , jets

STAR Forward Upgrade

West side of STAR experiment

<u>Calorimeter:LC.00002: Improving Energy Resolution for the STAR Forward Calorimeter System</u>

 <u>LC.00003</u>: Calibrating the Electromagnetic Calorimeter of the STAR Forward Calorimeter System using p + p collision data at Vs = 510 GeV data

- Forward upgrade proposal
- Beam use request

 Four new sub-systems:
Charged particle tracking
Forward Silicon Tracker
small-Strip Thin Gap Chambers (sTGC)
Electromagnetic calorimeter
Hadronic calorimeter

- Covers the pseudorapidity region $2.5 < \eta < 4$
- Rapidity coverage is the same as the Electron Ion Collider hadron arm

Small-Strip Thin Gap Chamber

- sTGCs are multiwire ionization chambers operated in the saturation mode
 - Used as hit finding detector or tracking detector
- Provides position and tracking resolution less than 200 μm , at high multiplicity and background
- Anode (HV): 50 μm gold-plated tungsten wires held at a potential of ~2900 V
- Cathode(Ground): graphite-epoxy mixture with a typical surface resistivity of 100 to 200 kΩ/□ sprayed on G-10 material
- Working gas: n-Pentane+CO2= 45:55% by volume
 - This gas mixture is needed to get more than 98% hit efficiency
- n-Pentane (C_5H_{12}) is flammable and liquid in normal atm
- Readout: Small copper strips, perpendicular to anode wires, behind the cathode
- Built double-sided chambers with diagonal strips
 - give *x*, *y*, *u* in each plane

Detector Assembly

sTGC detector (before pushed inside the STAR magnet, the final location)

sTGC detector in the final location

Gas System

Gas mixing cabinet

Heated gas lines

Tank blanketing pressure regulator (0-2 mbar)

Gas System - Performance

- Gas system was able to provide gas mixture to chambers at
 - 2 ± 0.5 mbar -> Acceptable range
 - ~50 cc/min per plane (8 chambers)

• n-Pentane ratio 46 ± 1%

- Mixing of CO₂ in liquid pentane when pumping pentane out, caused about 0.5 mbar of pressure oscillation
 - But, it is damped out traveling through long gas lines
- Gas system was able to provide constant pressure even with the atmospheric pressure changing more than 50 mbar
- No liquification was found in the gas lines

Safety System

- n-Pentane is Highly flammable & Liquid
 - Very difficult to handle
- sTGC chambers are vulnerable to high pressure
 - Acceptable tolerance is 4 mbar above atm
- Dedicated safety system was built to protect the detector & the experiment from safety incidents
- All the gas lines & the sTGC chambers are pressure tested for leaks at least 1 ½ times the operating pressure to ensures no leak
- Pentane leak detection system detects pentane leaks
- Pressure relief valves and pressure monitoring to avoid over pressurizing the system
- Pentane liquid detection
- Heated gas lines for transporting pentane gas mixture
- Programmable Logic Controller (PLC) monitors warning signal from safety sensors & take actions to put the system in safe state
 - PLC orient the safety values in the gas system such that the system is flushed with pure $\rm CO_2$ in a safety event
 - Turn off HV & LV

Safety System

Interlock controls cabinet

Safety PLC, redundant monitoring of inputs & outputs

Interlock machine interface

System monitoring GUI & Archiver

Readout and Electronics

LV power supply

Cooling tubes for the FEEs

- sTGC read out is based on ATLAS VMM chips
- FEEs, aggregators (RDOs) and power supply are in house built
- 3D printed cooling ducts with the dedicated air cooling unit regulate the FEE temperature to 35 °C

Performance during the data taking

Performance during the data taking

- Despite of COVID and lot of obstacles/complications, all the forward upgrade subsystems including the sTGC detector were fully installed on time and commissioned
- *p*+*p* 508 GeV data were collected during the RHIC Run 22 and will take data in next three years
- sTGC chambers were operated around the nominal 2900 V
 - Leakage current was about 50-60 uA during *p*+*p* 508 GeV collisions
- Achieved 97% hit efficiency
- Gas mixing system and the associated safety system performed very well
- Readout electronics performed exceptionally well during the data taking, given the high luminosity data taking

