

Status of Study of A-p Azimuthal Correlations with respect to the Participant Plane in Search for CVE at RHIC/STAR

Brian Chan (UCLA) for the STAR Collaboration

Supported in part by:

Content

► What is CME/CVE and How do we Observe it?

Method

- Reconstruction of Lambda
- Purity & Efficiency Corrections
- Checks
- AMPT Results
- Summary

Chiral Magnetic Effect

Magnetic Field + Chirality Imbalance = Current

spin alignment in B-field: opposite directions for opposite charges

courtesy of P.Sorensen

An excess of right or left handed quarks lead to a current flow along the magnetic field.

$$ec{J} = rac{e^2}{2\pi^2} \ \mu_5 \ ec{B}$$

handedness:

momentum and spin,

aligned or anti-aligned

CME - Related to Intrinsic Property of QCD

Strong B Field and Exotic Effects

Y. Hirono, D. E. Kharzeev and Y. Yin PRD 92,125031 (2015)

Chiral Symmetry Restoration

Chiral Vortical Effect

D. Kharzeev, D. T. Son, PRL 106 (2011) 062301

• Measure Λ -p[±] correlation to search for CVE

CME/CVE Observable: y Correlator

$$\frac{dN_{\alpha}}{d\phi} \propto 1 + 2v_{1,\alpha}\cos(\Delta\phi) + 2v_{2,\alpha}\cos(2\Delta\phi) + \cdots$$

$$+ 2a_{1,\alpha}\sin(\Delta\phi) + 2a_{2,\alpha}\sin(2\Delta\phi) + \cdots$$

 $\Delta \phi = \phi - \Psi_{RP}$

$$\begin{split} \gamma &= \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\psi_{RP}) \right\rangle \\ &= \left[\left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + B_{in} \right] - \left[\left\langle a_{\alpha} a_{\beta} \right\rangle + B_{out} \right] \\ \gamma_{132} &= \left\langle \cos(\phi_{\alpha} - 3\phi_{\beta} + 2\Psi_{RP}) \right\rangle \end{split}$$

Reaction plane (Ψ_R)

Basic Information for Analysis

- **>** Data Set: Au+Au at $\sqrt{s_{NN}}$ = 27 GeV from 2018
- Main Detector Used: STAR Time Projection Chamber (TPC)
 - Centrality Selection Glauber Model
 - Event Plane Measurement
 - ► EtaSub Method (for v_2): Eta Range 0.1 < $|\eta|$ < 1.0
 - Identify Proton and Pion Tracks

Λ / $\overline{\Lambda}$ Reconstruction

- Protons and Pions Identification
- Topological Cuts to Reconstruct Lambdas

Purity & Efficiency Corrections

> Purity Corrections: Use Polynomial Fit to Model Backgrounds for Λ / $\overline{\Lambda}$ Reconstruction

Note: Blue lines are the mass cuts for Lambda; Red Line is the Background Fit

Purity for Centrality 30-40% $P_t = 1.1-1.2 \text{ GeV/c}$:

$$\frac{N_{\Lambda}}{N_{\Lambda} + N_{Background}} = 0.863$$

Purity & Efficiency Corrections

- Efficiency Corrections:
 - **Embed** Λ / $\overline{\Lambda}$ Tracks into real data
 - Compare # Reconstructed Embedded Tracks vs. Actual Embedded Tracks

0.4 % Beconstructed 0.35 % 0.3 % Reconstructed 0.4 Centrality Centrality 70-80% - 70-80% 0.35 60-70% 60-70% 50-60% 50-60% 0.3 40-50% 40-50% 30-40% 30-40% 0.25 0.25 20-30% 20-30% 10-20% 10-20% 5-10% 0.2 0.2 5-10% 0-5% 0-5% 0.15 0.15 0.1 0.1 0.05 0.05 2.2 P_t (GeV/c) 2 0 0.2 0.6 0.8 1.2 1.6 1.8 2.2 P_t (GeV/c) 1.4 0.2 0.8 1.2 1.8 2 0.4 0.6 1.4 1.6

Λ

AMPT Results

These results are part of the feasibility study to examine the methods, and similar analyses with STAR data are ongoing

Also, for Λ -p correlations results, they serve as a baseline to compare STAR data results with.

Information on AMPT Data:

Version of AMPT: SM v2.25t4cu

Parton Cross Section: 3 mb

AMPT - v_2 vs. p_T for Centrality 10-40%

Note - AMPT model has not been tuned to match real data shown only as an example of what it would be like for real data analysis

AMPT - A-p Correlations

Step 1: Calculate correlations for Λ and $\overline{\Lambda}$ separately

AMPT - A-p Correlations

Step 2: Average results for Λ and $\overline{\Lambda}$ to get full picture of baryonic charge separation Step 3: Compare such results for γ_{112} (signal + background) and γ_{132} (mostly background)

14

AMPT - **A-p** Correlations

Step 4: Normalize by v_2 and $\Delta\delta$ to obtain κ_{112} and κ_{132} that allow for easier comparisons across systems

In general, κ_{132} is close to unity, and κ_{112} is above κ_{132} . The AMPT results provide a baseline for background contributions.

Summary

- Employed Baryonic Charge Separation in Search for CVE
- Studied Baseline for Background with AMPT
- Current Status for STAR Data Analysis:
 - \blacktriangleright $\Lambda/$ $\overline{\Lambda}$ Reconstructed, Raw Correlators Computed
 - Purity & Efficiency have been obtained
- Next Steps:
 - Apply Corrections to Raw Results
 - Calculate Systematic Errors

Thank you!

Event Plane Resolution

Resolution

Λ / $\overline{\Lambda}$ Reconstruction

Centrality-Independent

- Proton
 - $\blacktriangleright |n\sigma| < 4$
 - 0.2 GeV/c < P_t < 2.0 GeV/c</p>
- Lambda DCA < 3.5 cm

We apply centrality-dependent quality cuts:

Centrality	Proton DCA	Pion DCA	Proton-Pion DCA	Lambda Decay Length
0-20%	> 0.4 cm	> 1.5 cm	< 0.9 cm	> 4.0 cm
20-40%	> 0.3 cm	> 1.3 cm	< 1.0 cm	> 3.5 cm
40-60%	> 0.2 cm	> 1.0 cm	< 1.1 cm	> 3.0 cm
60-80%	> 0.1 cm	> 0.8 cm	< 1.2 cm	> 2.5 cm

• Pion

• $|n\sigma| < 4$

• $P_t > 0.2 \text{ GeV/c}$

E877, Phys.Rev. C56 (1997) 3254

Efficiency From Embedded Data

- Reconstructed Embedded A / $\overline{\Lambda}$ using the same topological cuts
- 2 types of Embedded Data -Flat MC P_t distribution vs.
 Exponential MC P_t distribution

- Flat MC P_t distribution: Sampling based on STAR Published Data 2019
- Binned Reconstructed & MC Tracks in 0.1GeV/c P_t bins
- Computed Efficiency per 0.1GeV/c P_t bins

