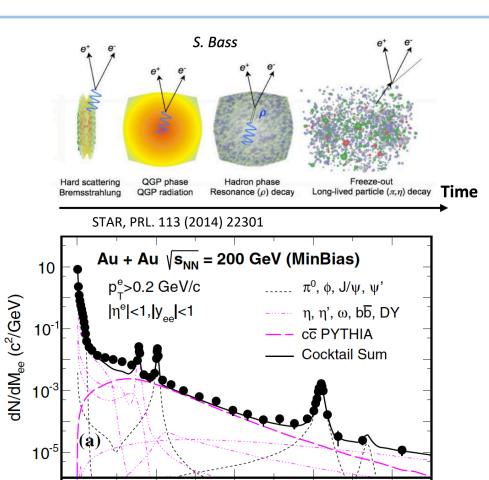


Measurement of dielectron production in Au+Au collisions at √s_{NN} = 54.4 GeV with the STAR experiment

Zhen Wang (for the STAR collaboration)

Shandong University


DNP 2020, Online

Dielectron production

 M_{ee} (GeV/c²)

Rapp: broadened ρ +QGP PHSD: broadened ρ +QGP

Ratio to Cocktail

2.5

11/1/2020

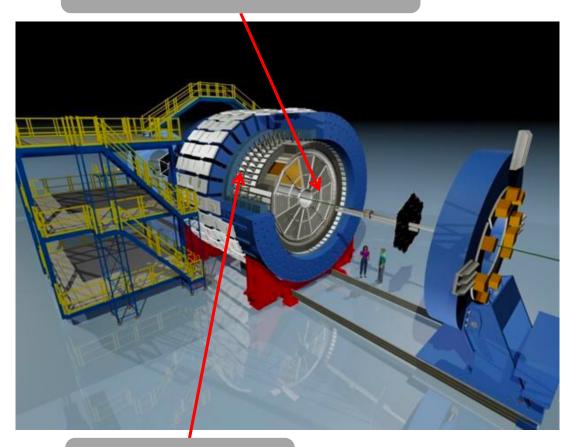
(b)

Dielectron – an excellent probe

- Minimal interaction with the medium
- Carries information from the initial stage to the final stage of a collision

Different physics of interest

- \triangleright Low Mass Region (LMR, $M_{ee} < M_{\phi}$)
 - Vector meson in-medium modifications
 - Possible link to chiral symmetry restoration
- ightharpoonup Intermediate mass region (IMR, $M_{\phi} < M_{ee} < M_{J/\psi}$)
 - QGP thermal radiation is predicted as a QGP thermometer


Physics interest: Adv. Nucl. Phys. 25 (2000) 1

Rapp: PoS CPOD2013, 008 (2013) PHSD: Phys. Rev. C 85, 024910 (2012);

The STAR experiment

Time Projection Chamber

Time of Flight

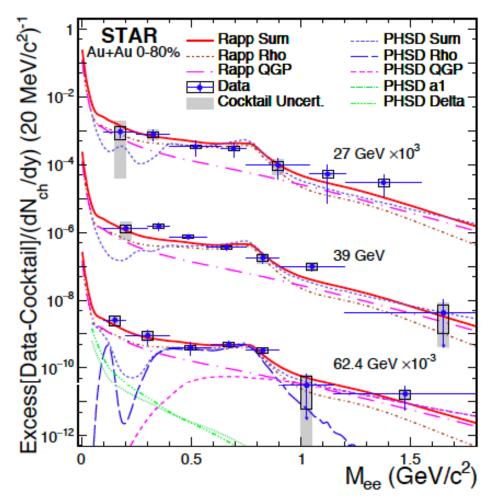
Key detectors used in this analysis

Time Projection Chamber

- \triangleright Acceptance : $|\eta| < 1, 0 < \phi < 2\pi$
- > Tracking, particle momenta, electron identification

Time of Flight

- \triangleright Acceptance : $|\eta| < 0.9$, $0 < \phi < 2\pi$
- Rejection of slow hadrons
- > Improve electron purity


Dataset

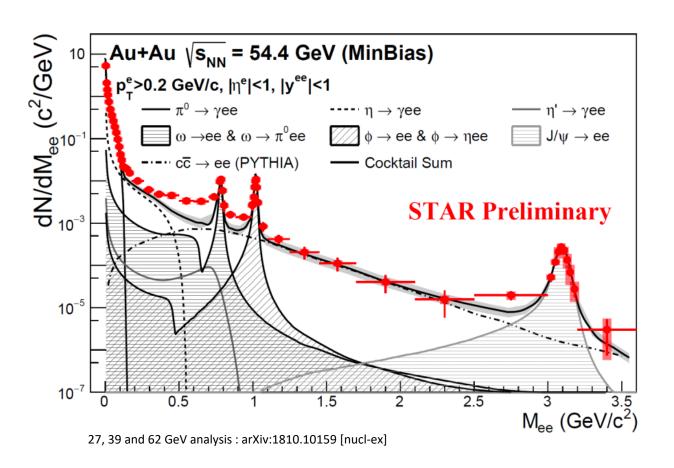
New datasets are ~10 times larger than that in the $Vs_{NN} = 27,39$ and 62.4 GeV

Year	Energy	Used events
2017	54.4 GeV	875M
2011	27 GeV	68M
2010	39 GeV	132M
2010	62.4 GeV	62M

√s_{NN} = 27, 39 and 62.4 GeV dielectron result

- > Excess yield (data cocktail) with acceptance correction
- \succ Theory calculations including in-medium broadened ρ and thermal radiation are compared with data
- ➤ Within uncertainties, the model calculations are found to reproduce the acceptance-corrected excess in Au+Au collisions at each of the collision energies.

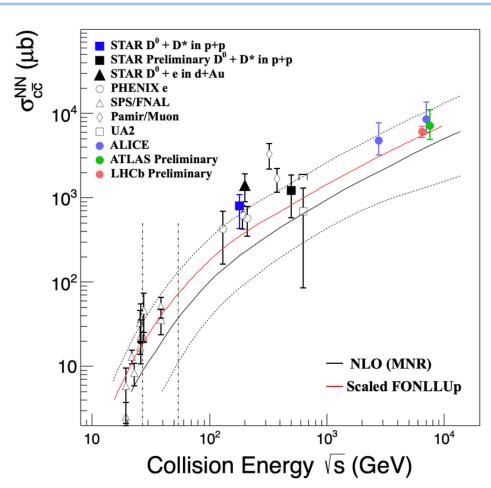
Higher precision measurements now possible with new datasets at $\sqrt{s_{NN}} = 54.4 \text{ GeV}$


STAR: arXiv:1810.10159 [nucl-ex]

Rapp et al.: PRC 63 (2001) 054907, PRL 97 (2006) 102301 Endres et al.: PRC 91 (2015) 054911, PRC 94 (2016) 024912

PHSD: Nucl. Phys. A831 (2009) 215, Prog. Part. Nucl. Phys. 87 (2016) 50

Cocktail in 54.4 GeV analysis



Cocktails in QM 2019

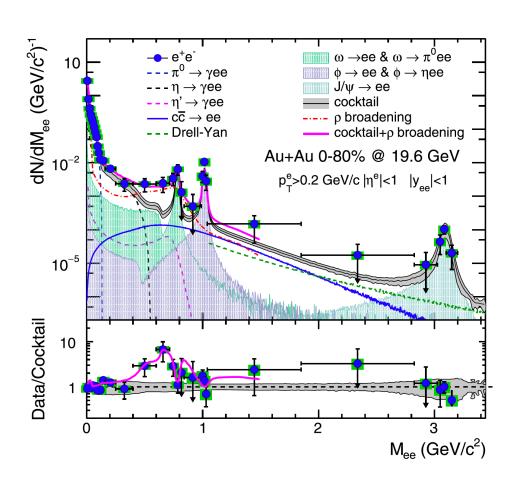
- $ightharpoonup Vs_{NN} = 54.4$ GeV charm component is taken from analysis of 2010 $Vs_{NN} = 62.4$ GeV data charm component and scaled by the ratio of charm cross section and N_{bin} at $Vs_{NN} = 54.4$ GeV to 62.4 GeV
- ➤ Drell-Yan contribution was not included in $\sqrt{s_{NN}}$ = 54.4 GeV QM19 cocktails

Charm component

- [1] Fermilab E769 Collaboration: Phys. Rev. Lett. 77, 2388 (1996).
- [2] S P K Tavernier: Rep. Prog. Phys. 50, 1439 (1987).
- [3] STAR : Phys. Rev. D 86, 072013 (2012).
- [4] PHENIX: Phys. Rev. Lett. 97, 252002 (2006).
- [5] ATLAS : JHEP 01 (2012) 128 [6] LHCb : JHEP 03 (2016) 159

Charm yield scale method

➤ Charm semi-leptonic decay in p+p collisions is scaled by following equation to match the Au+Au collisions.


$$\frac{1}{N}\frac{dN}{dM} = \frac{1}{nCharm}\left(\frac{dN}{dM}\right)_{pp}\frac{\sigma_{c\bar{c}}}{\sigma_{mb}}N_{bin}BR_{(c\to e^+)}BR_{(c\to e^-)}$$

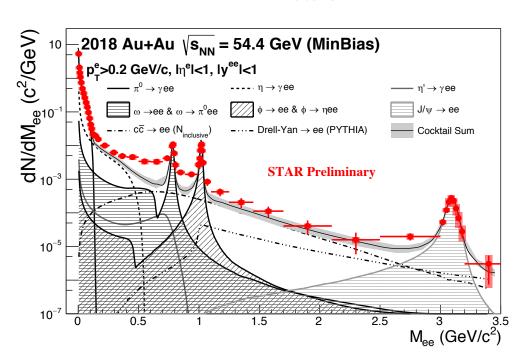
Charm cross section

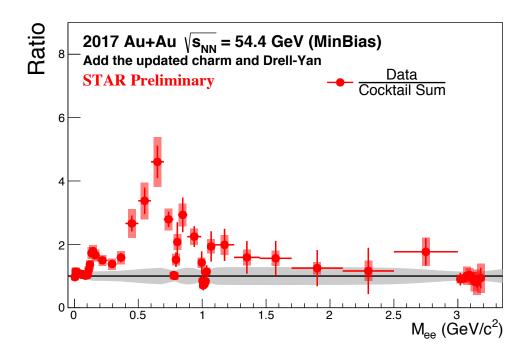
- The charm cross sections at $\sqrt{s_{NN}} = 54.4$ GeV are extrapolated from worldwide data^{[1][2][3][4][5][6]}.
- The perturbative QCD leading-order plus next-to-leading logarithms upper-limit was used to fit the world-wide measurements of $\sigma_{c\bar{c}}^{NN}$ in order to determine the input charm cross section.

Drell-Yan component

STAR 19.6 GeV: Physics Letters B 750 (2015) 64–71 NA50 17.3 GeV: Physics Letters B 410 (1997) 327

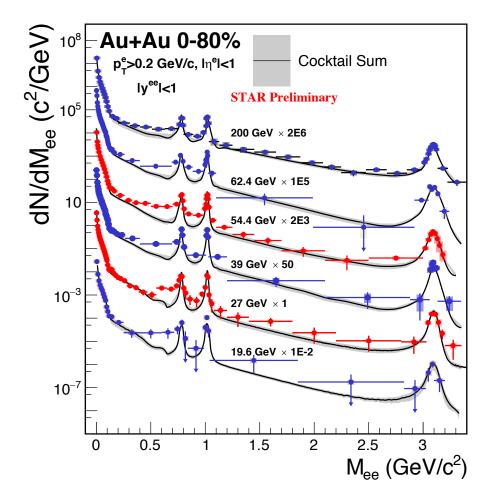
Drell-Yan component


- ➤ Drell-Yan component becomes similar order of magnitude with charm component at lower energy in the intermediate mass region
- $ightharpoonup \sigma_{DY}$ was taken from PYTHIA and was corrected by the ratio of the cross-section used in STAR 19.6 GeV dielectron measurement to the corresponding PYTHIA cross-section at 19.6 GeV


$$\sigma_{DY} = \sigma_{DY \ 54.4 \ GeV}^{PYTHIA} * \frac{\sigma_{DY \ 19.6 \ GeV}^{Paper}}{\sigma_{DY \ 19.6 \ GeV}^{PYTHIA}} = 19.25 \ nb$$
 $\sigma_{DY \ 54.4 \ GeV}^{PYTHIA} = 26.19 \ nb$

54.4 GeV efficiency corrected spectra

Charm component with N_{inclusive} scale method and Drell-Yan component added in cocktail



√s_{NN} = 54.4 GeV : first dielectron measurement at this energy, cocktail updated

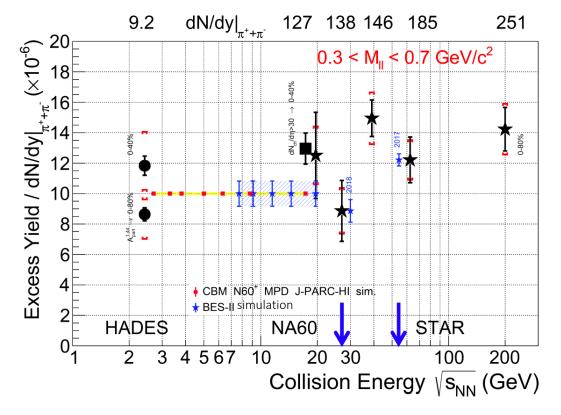
- \triangleright A hint of excess in the intermediate mass region at 1.8 σ level
- > p_T and centrality differential analysis is ongoing
- Working on having a better background removal. For example, photonic electron

Summary and outlook

New measurements at $Vs_{NN} = 54.4 \text{ GeV}$:

- A hint of excess in the intermediate mass region can be observed in $\sqrt{s_{NN}} = 54.4$ GeV measurements
- \triangleright Enough statistics for differential measurements vs p_T , centrality, etc.

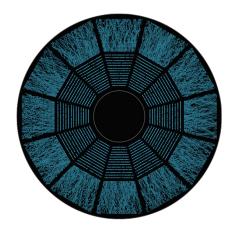
BES-II Program:

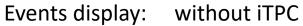

- Measurement of dielectron spectra for $Vs_{NN} = 7.7, 9.1, 11.5, 14.5, 19.6$ GeV will be possible with STAR BES-II data
- ➤ Reduced charm cross section enhances sensitivity to thermal radiation in the intermediate mass region
- Detector upgrade will reduce the uncertainties of dielectron analysis

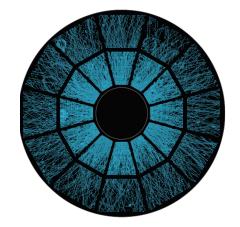
200GeV: PRC 92 (2015) 024912 19.6 GeV: PLB 750 (2015) 64

62.4 & 39 GeV: arXiv:1810.10159 [nucl-ex]

Dielectron measurement with STAR BES-II program

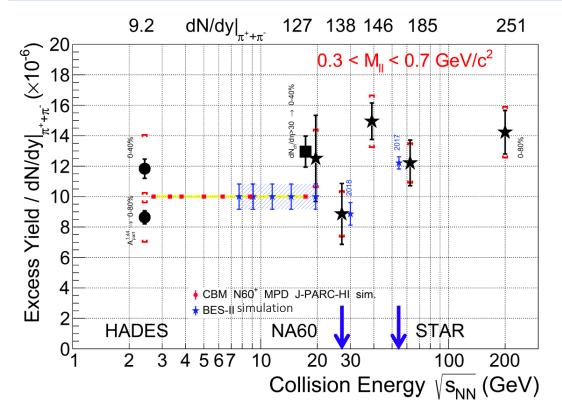



Plot: STAR, F.Seck, QM 2019


NA60: Chiral 2010, AIP Conf.Proc. 1322 (2010) 1 STAR: PLB 750 (2015) 64, arXiv:1810.10159 [nucl-ex]

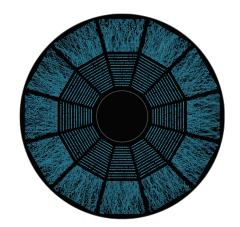
HADES: Nature Phys. 15 (2019) 1040

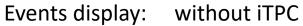
- Systematically study energy dependence of low mass region excess between $Vs_{NN} = 7.7$ and 19.6 GeV
- ➤ Enhanced tracking and particle identification capabilities with iTPC and eTOF upgrades
 - \triangleright Extend η acceptance from 1.0 to 1.5
 - \triangleright Extend the lower limit of p_T from 0.2 to 0.1 GeV/c

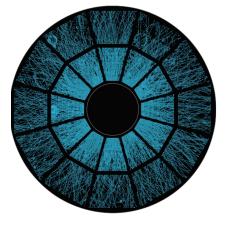


with iTPC

Dielectron measurement with STAR BES-II program

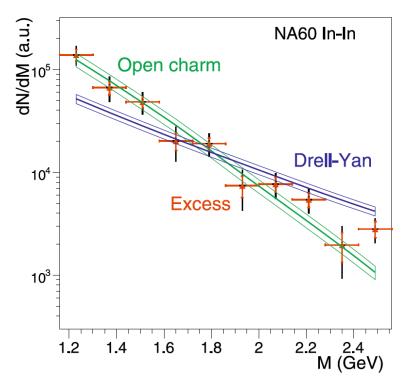

Plot: STAR, F.Seck, QM 2019


NA60: Chiral 2010, AIP Conf.Proc. 1322 (2010) 1 STAR: PLB 750 (2015) 64, arXiv:1810.10159 [nucl-ex]


HADES: Nature Phys. 15 (2019) 1040

Thanks for your attention!

- > Systematically study energy dependence of low mass region excess between $Vs_{NN} = 7.7$ and 19.6 GeV
- ➤ Enhanced tracking and particle identification capabilities with iTPC and eTOF upgrades
 - \triangleright Extend η acceptance from 1.0 to 1.5
 - \triangleright Extend the lower limit of p_T from 0.2 to 0.1 GeV/c

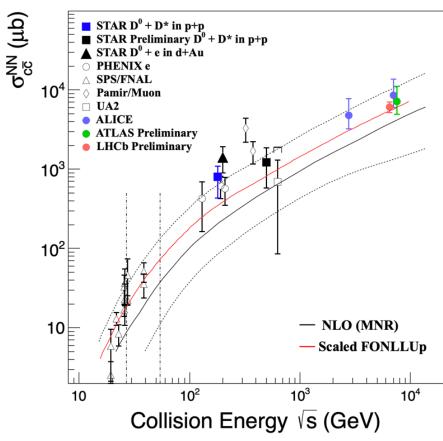

with iTPC

Backup

Open charm and Drell-Yan contributions at 17.3 GeV In–In collisions.

Eur. Phys. J. C (2009) 61: 711–720

Fig. 4.3 Acceptance-corrected mass spectra of all three contributions to the IMR spectrum: Drell–Yan, *open charm* and the excess (*triangles*). The data are integrated over centrality


Drell-Yan cross-section scale factor

$$m Vs_{NN}$$
 = 17.3 GeV σ_{DY}^{NA50} = 9.88nb $m Vs_{NN}$ = 19.6 GeV σ_{DY}^{Pythia} = 13.44nb

Correct factor :
$$\frac{\sigma_{DY}^{NA50}}{\sigma_{DY}^{Pythia}}$$

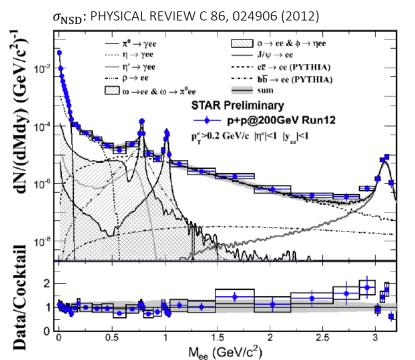
Charm cross-section and scale method

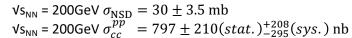
Phys. Rev. Lett. 77, 2388 (1996). Rep. Prog. Phys. 50, 1439 (1987). Phys. Rev. D 86, 072013 (2012). Phys. Rev. Lett. 97, 252002 (2006).

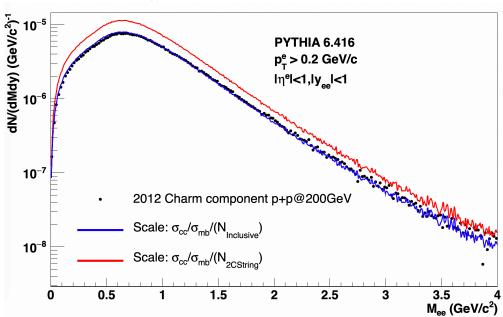
Charm cross section

- The charm cross sections at $Vs_{NN} = 54.4$ GeV are extrapolated from worldwide data.
- The perturbative QCD leading-order plus next-to-leading logarithms upper-limit was used to fit the world-wide measurements of $\sigma_{c\bar{c}}^{NN}$ in order to determine the input charm production cross section.

Charm scale method


➤ Charm semi-leptonic decay in p+p collisions is scaled by equation (1) to match the Au+Au collisions.


$$\frac{1}{N}\frac{dN}{dM} = \frac{1}{nCharm} \left(\frac{dN}{dM}\right)_{pp} \frac{\sigma_{c\bar{c}}}{\sigma_{mb}} N_{bin} BR_{(c \to e^+)} BR_{(c \to e^-)} (1)$$


- In STAR $\sqrt{s_{NN}}$ = 27,39 and 62.4 GeV analyses, the number of PYTHIA events with 1 c string and 1 \overline{c} string events is used as the number of charm (N_{2CString} method)
- In STAR $\sqrt{s_{NN}} = 200$ GeV paper, the number of PYTHIA events with at least 1 c or \overline{c} is used as the number of charm ($N_{inclusive}$ method)

Comparison of two scale method

Journal of Physics: Conference Series, 535:012006, sep 2014

- \triangleright STAR p+p at \forall s = 200 GeV was used to see if the cross-section from PYTHIA is consistent with experimental data
- ➤ Charm component scaled with N_{inclusive} method is consistent with charm component measured in pp collisions (STAR Run12)
- ➤ Charm component scaled with N_{2CString} method is ~1.4 factor higher than charm component measured in pp collisions (STAR Run12)
- ➤ N_{inclusive} method is the correct way to scale charm component
- \triangleright The charm component in $\forall s_{NN} = 54.4$ will be scaled by $N_{inclusive}$ method

