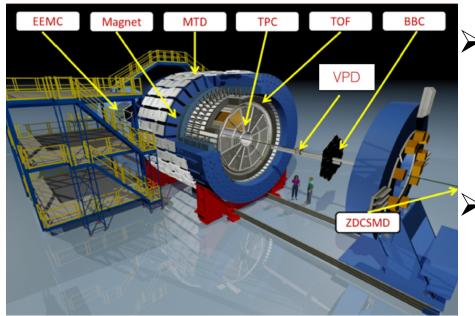


Beam-energy dependence of the longitudinal broadening of two-particle transverse momentum correlations from STAR

Niseem Magdy Abdelrahman (For the STAR Collaboration)
University of Illinois at Chicago
niseemm@gmail.com



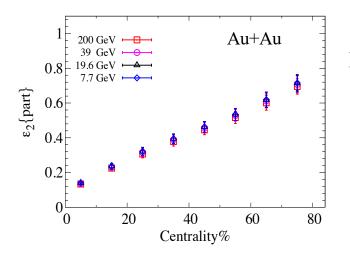
- ➤ Time Projection Chamber
 Tracking of charged particles with:
 - ✓ Full azimuthal coverage
 - \checkmark $|\eta| < 1$ coverage
- ➤ In this analysis we used tracks with:

$$0.2 < p_T < 2 \text{ GeV/c}$$

Motivation:

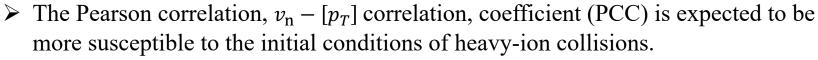
 \triangleright The beam-energy dependence of flow and p_T correlations will reflect the respective roles of ϵ_n and its fluctuations and $\frac{\eta}{s}$ as a function of T and μ_B

Beam energy dependence for a given collision system:



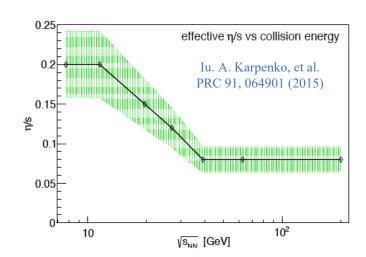
- Initial-state ε_2 is approximately energy independent
- \triangleright Viscous attenuation ($\propto \frac{\eta}{s}(T)$) is beam energy dependent

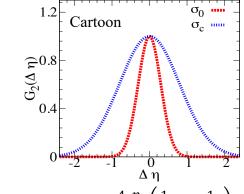
Piotr Bozek PRC 93, 044908 (2016) Niseem Magdy, Roy Lacey PLB 821 136625 (2021)





- Phys.Rev.Lett. 97 (2006) 162302 The Gavin ansatz:
- \triangleright The p_T 2-P correlation function is sensitive to the dissipative viscous effects that are ensured during the transverse and longitudinal expansion of the collisions' medium.
- Because such dissipative effects are more prominent for long-lived systems, they lead to longitudinal broadening of p_T 2-P correlation function as collisions become more central.
- A proposed estimate of this broadening, $\Delta \sigma^2$, can be linked to η/s as:





$$\Delta \sigma^2 = \sigma_c^2 - \sigma_0^2 = \frac{4}{T_c} \frac{\eta}{s} \left(\frac{1}{\tau_0} - \frac{1}{\tau_{c,f}} \right)$$

Motivation:

* Transverse momentum-flow correlations:

$$cov(v_n^2, [p_T]) = Re\left(\left|\frac{\sum_{a,c} w_a \, w_c \, e^{in(\phi_a - \phi_c)} \left([p_T] - \langle [p_T] \rangle\right)_b}{\sum_{a,c} w_a \, w_c}\right|\right)$$

$$\rho(v_n^2, [p_T]) = \frac{cov(v_n^2, [p_T])}{\sqrt{Var(v_n^2)_{dyn} C_{\{k\}}}}$$

The Pearson correlation coefficient (PCC) measures the strength of the v_n , $[p_T]$ correlation.

$$C_k = \left(\frac{\sum_b \sum_{b'} w_b w_{b'} \left(p_{T,b} - \langle [p_T] \rangle \right) \left(p_{T,b'} - \langle [p_T] \rangle \right)}{\left((\sum_b w_b)^2 - \sum_b (w_b)^2 \right)} \right)$$

$$Var(v_n^2)_{dyn} = v_n^4 \{2\} - v_n^4 \{4\}$$

 $|\Delta \eta| > 0.7$

J. Jia, M. Zhou, A. Trzupek, PRC 96 034906 (2017)

ATLAS Collaboration, Eur. Phys. J. C 79, 985 (2019)

Piotr Bozek PRC 93, 044908 (2016)

Niseem Magdy, Roy Lacey PLB 821 136625 (2021)

• The
$$p_T$$
 2-P correlator:

$$G_2(\eta_1, \varphi_1, \eta_2, \varphi_2) = \frac{\left\langle \sum_{i}^{n_1} \sum_{j \neq i}^{n_2} p_{T,i} p_{T,j} \right\rangle}{\left\langle n_1 \right\rangle \left\langle n_2 \right\rangle} - \left\langle p_{T,1} \right\rangle_{\eta_1, \varphi_1} \left\langle p_{T,2} \right\rangle_{\eta_2, \varphi_2}$$

- $\succ r_{1,2}$ is a number correlation, it will be unity when the particle pairs are independent
- \triangleright The $r_{1,2}$ correlations can be impacted by the centrality definition

Excluding the POI from the collision centrality definition, helps reduce the possible self-correlations.

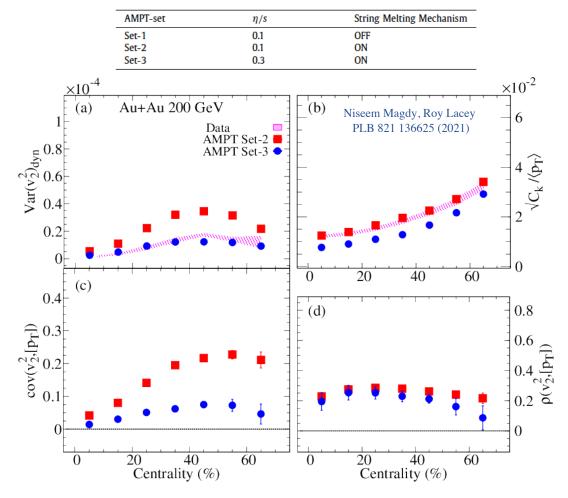
$$\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{T,i} p_{T,j} \right\rangle}{\left\langle n_{1} \right\rangle \left\langle n_{2} \right\rangle} = \frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{T,i} p_{T,j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2}$$

$$r_{1,2} = \frac{\left\langle \sum_{i}^{n_1} \sum_{j \neq i}^{n_2} n_i \ n_j \right\rangle}{\langle n_1 \rangle \langle n_2 \rangle}$$

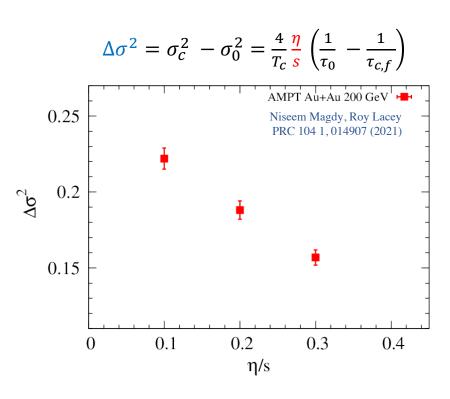
Niseem Magdy, Roy Lacey PRC 104 1, 014907 (2021)

STAR Collaboration PLB 704 (2011) 467–473

Motivation:



 $\rho(v_2^2, [p_T])$ values show little, if any, change with η/s , suggesting that $\rho(v_2^2 - [p_T])$ is dominated by initial state effects

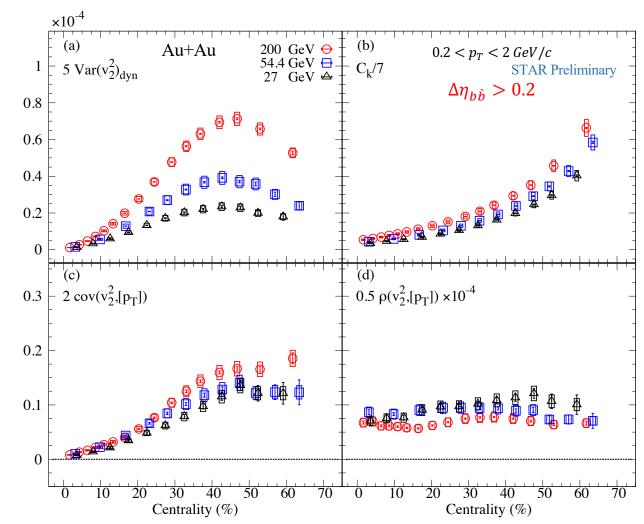


 $\triangleright \Delta \sigma^2$ values show a strong η/s synsitivety

*Transverse momentum-flow correlations:

The beam-energy dependance of the transverse momentum-flow correlations

- $\gt Var(v_2^2)_{dyn}$ decreases with beam-energy
- \triangleright C_k decreases with beam-energy
- $ightharpoonup cov(v_2^2, [p_T])$ decreases with beam-energy



 \triangleright The Pearson correlation, $\rho(v_2^2, [p_T])$, increases with decreasing the beam-energy

Investigations of the $p_T - p_T$ correlations from STAR

STAR ☆

> The azimuthal correlations for Au+Au at 200 GeV

$$G_{2}(\Delta\varphi) = A_{0}^{p_{T}} + 2\sum_{n=1}^{6} A_{n}^{p_{T}} \cos(n\Delta\varphi) \qquad a_{n}^{p_{T}} = \sqrt{A_{n}^{p_{T}}}$$

$$0.03 - \frac{70.80\%}{-60.70\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{60.70\%}{-90.00\%} \qquad STAR \ Preliminary$$

$$0.02 - \frac{30.40\%}{-90.00\%} \qquad STAR \ Preliminary$$

$$0.01 - \frac{1}{10.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad STAR \ Preliminary$$

$$0.02 - \frac{1}{10.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad STAR \ Preliminary$$

$$0.02 - \frac{1}{10.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad STAR \ Preliminary$$

$$0.02 - \frac{1}{10.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

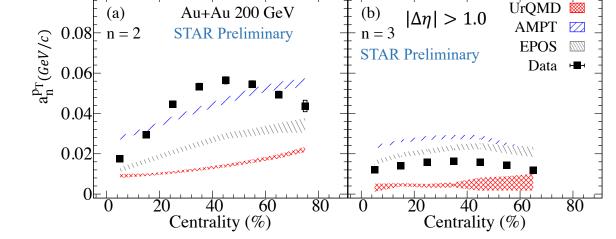
$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

$$- \frac{30.40\%}{-90.00\%} \qquad Au + Au \ 200 \ GeV$$

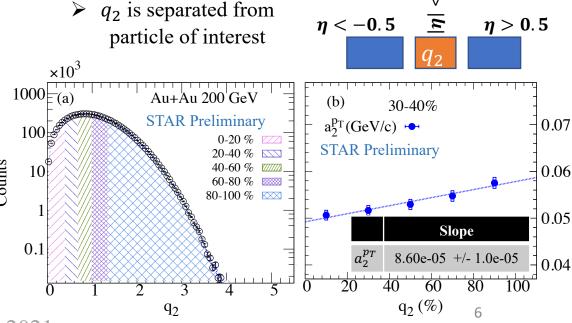
$$- \frac{30.40$$



- ✓ Decrease with harmonic order
- ✓ Models do not describe the data
- ✓ Event shape dependent

The extracted $a_n^{p_T}$:

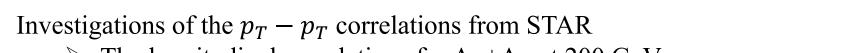


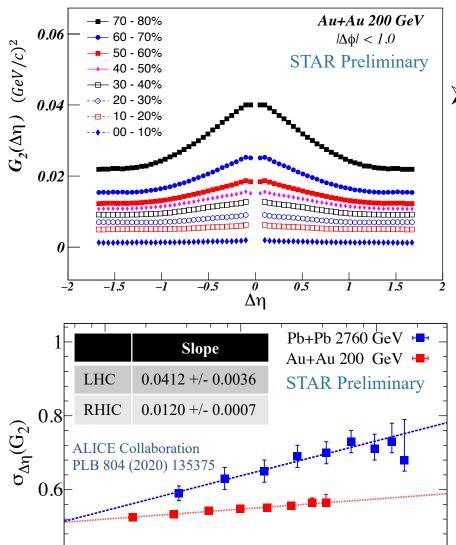


Niseem Magdy DNP-2021

➤ The longitudinal correlations for Au+Au at 200 GeV

1000





100

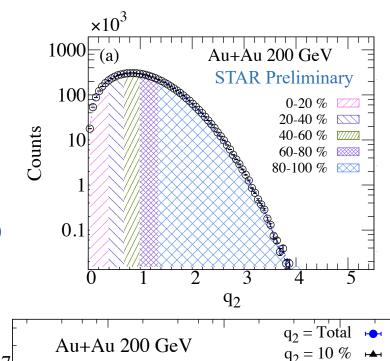
0.4

 \succ The slope of $\sigma_{\Delta\eta}(G_2)$ is softer for RHIC

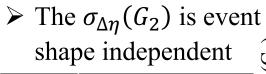
> ✓ Smaller η/s for RHIC P. Alba et al.

PRC 98, 034909 (2018)

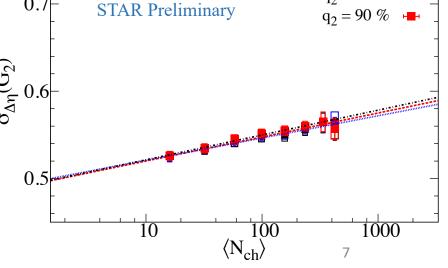
0.7



STAR ☆



	Slope
Total	0.0120 +/- 0.0007
10 %	0.0119 +/- 0.0009
90 %	0.0110 +/- 0.0012



Niseem Magdy DNP-2021

Conclusions

We studied the transverse momentum-flow correlations as well as the transverse momentum 2-P correlations;

- > Transverse momentum-flow correlations:
 - ✓ The $cov(v_2^2, [p_T])$ increases with beam energy
 - ✓ The normalized $\rho(v_2^2, [p_T])$: Weakly increases with decreasing the beam-energy

These measurements compared to viscous hydrodynamic model calculation will provide constraints on the initial conditions and $\frac{\eta}{s}(T)$

- \triangleright The extracted $a_n^{p_T}$:
 - ✓ Decrease with harmonic order
 - \checkmark Models don't describe the $a_n^{p_T}$ data
 - ✓ Event shape dependent $a_2^{p_T}$
- \triangleright The slope of $\sigma_{\Delta\eta}(G_2)$ vs multiplicity is:
 - ✓ Softer for RHIC (indicating smaller η/s for RHIC) than LHC
 - ✓ Event shape independent

These comparisons are reflecting the efficacy of the $G_2(\Delta\eta,\Delta\varphi)$ correlator to differentiate among theoretical models as well as to constrain the η/s .

N. Magdy and R. Lacey PRC 104 1, 014907 (2021)

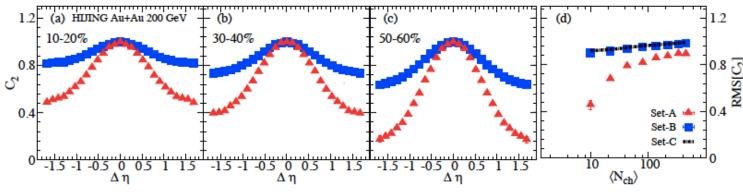
The
$$p_T$$
 2-P correlator is given as: $G_2(\eta_1, \varphi_1, \eta_2, \varphi_2) = \frac{\left\langle \sum_{i=j\neq i}^{n_1} \sum_{j\neq i}^{n_2} p_{T,i} p_{T,j} \right\rangle}{\left\langle n_1 \right\rangle \left\langle n_2 \right\rangle}$

The first term can be given as: $-\langle p_{T,1} \rangle_{\eta_1, \varphi_1} \langle p_{T,2} \rangle_{\eta_2, \varphi_2}$

> The first term can be given as:

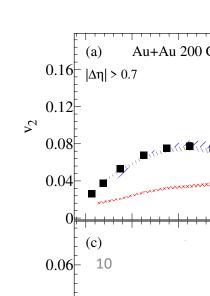
$$\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{T,i} p_{T,j} \right\rangle}{\left\langle n_{1} \right\rangle \left\langle n_{2} \right\rangle} = \frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{T,i} p_{T,j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2}, \qquad r_{1,2} = \frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle}{\left\langle n_{1} \right\rangle \left\langle n_{2} \right\rangle}.$$

- $ightharpoonup r_{1.2}$ is a number correlation, it will be 1 when the particle pairs are independent.
- \triangleright The $r_{1.2}$ correlations can be impacted by the centrality definition.



Comparison of the $C_2(\Delta \eta)$ correlators $(|\Delta \varphi| < 1)$ obtained from 10-20%, 30-40% and 50-60% central HIJING events for Au+Au collisions at 200 GeV.

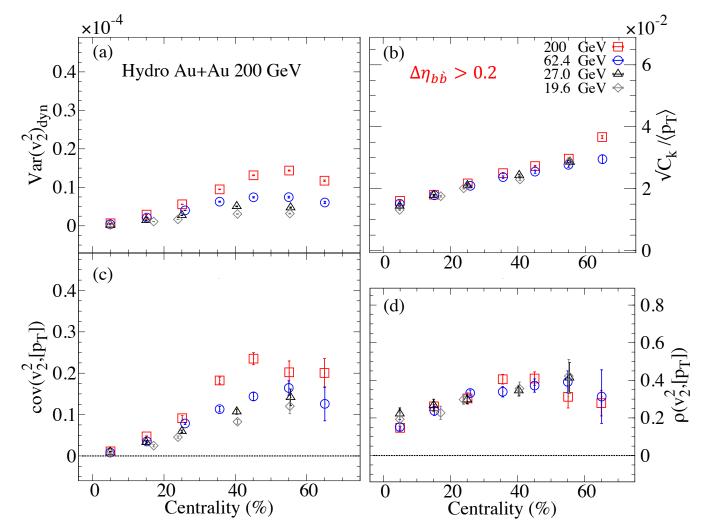
- Set-A: with centrality defined using all charged particles in an event, (i)
- Set-B: with centrality defined using random sampling of charged particles in an event
- (iii) Set-C: with centrality defined using the impact parameter distribution.
- Excluding the POI from the collision centrality definition, serves to reduce the possible self-correlations.



*Transverse momentum-flow correlations:

The beam-energy dependance of the transverse momentum-flow correlations using hydro model

- $ightharpoonup Var(v_2^2)_{dyn}$ decreases with beam-energy
- \triangleright C_k decreases with beam-energy
- $ightharpoonup cov(v_2^2, [p_T])$ decreases with beam-energy



 \triangleright The Pearson correlation, $\rho(v_2^2, [p_T])$, increases with decreasing the beam-energy