Measurement of Transverse Spin-Dependent Azimuthal Correlation of Charged Pion Pairs in $p^{\uparrow}p$ Collisions at \sqrt{s} = 510 GeV using STAR 2017 Data

STAR

Navagyan Ghimire (For the STAR Collaboration) 10/13/2021

Supported in part by

Office of Science

Motivation

- At leading-twist, the parton structure of hadrons is described by three parton distribution functions: unpolarized PDFs ($f_1(x)$), helicity PDFs ($g_1(x)$) and transversity PDFs ($h_1^q(x)$).
- $h_1^q(x)$ is the least known of the three PDFs.
- $h_1^q(x)$ is a chiral odd PDF and it needs to couple with a chiral-odd partner.
- For estimating tensor charge (g_T), a precise determination of transversity is necessary.

 $g_T = \int_0^1 dx [h_1^q(x) - h_1^{\overline{q}}(x)]$

10/6/21

Motivation

- In $p^{\uparrow}p$ collision, $h_1^q(x)$ couples with chiral odd spin-dependent dihadron fragmentation function $H_1^{\leq h_1h_2/q}(z, M)$, Interference Fragmentation Function (IFF).
- Transverse polarization of the fragmenting quark influences the azimuthal distribution of the hadron pair in the final state, thus producing di-hadron correlation asymmetry, A_{UT}.

$$A_{UT} \propto \frac{\sum_{i,j,k} h_1^{i/p_a}(x_a) f_1^{j/p_b}(x_b) H_1^{\ll h_1 h_2/k}(z, M_h)}{\sum_{i,j,k} f_1^{i/p_a}(x_a) f_1^{j/p_b}(x_b) D_1^{\ll h_1 h_2/k}(z, M_h)}$$

- Previously, the STAR experiment at RHIC measured non-zero A_{UT} using $p^{\uparrow}p$ data from 2006 at $\sqrt{s} = 200$ GeV with $L_{int} = 1.8 \ pb^{-1}$ and from 2011 at $\sqrt{s} = 500$ GeV with $L_{int} = 25 \ pb^{-1}$
- In 2017, STAR collected 350 pb^{-1} of $p^{\uparrow}p$ data at $\sqrt{s} = 510$ GeV which will significantly improve the statistical precision of A_{UT} measurement and thus further constrain global fits of $h_1^q(x)$.

STAR Experiment At RHIC

Relativistic Heavy Ion Collider

• RHIC is the world's only collider of longitudinally and transversely polarized protons with \sqrt{s} up to 510 GeV

Solenoidal Tracker At RHIC

- STAR is the only experiment currently running at RHIC.
- TPC (tracking, PID)
- BEMC (electromagnetic calorimeter, event triggering)
- TOF (PID)

STAR Kinematics

• STAR covers much higher Q^2 than HERMES and COMPASS.

10/6/21

• Results from $p^{\uparrow}p$ 510 GeV will provide valuable information about evolution and allow to access lower x.

Data Set

A _{UT} at STAR				
Year	2006	2011	(2015)	(2017)
$\sqrt{s} (GeV)$	200	500	200	510
$L_{int}(pb^{-1})$	~1.8	~25	~48	350
	Published		STAR preliminary	On-going
 Phys. Rev. Lett. 115, 242501 (2015) 				

• Phys. Lett. B 780 (2018) 332

Kinematic Observables

 A non-zero A_{UT} singal is expected to be observed vs. different kinematic observables of pion pairs in final state.

For $\eta > 0$, where partonic x is greater, a larger A_{UT} is expected.

For IFF channel, model calculation shows enhancement of A_{UT} around ρ mass region.

Phys. Lett. B 780 (2018) 332

 A_{UT} increases as pair p_T increases.

Asymmetry Extraction

$$A_{UT}=rac{d\sigma^{\uparrow}-d\sigma^{\downarrow}}{d\sigma^{\uparrow}+d\sigma^{\downarrow}}$$

- For a symmetric detector like STAR (in azimuthal space),
 - A_{UT} can be extracted from cross-ratio formula.
 - Free from detector efficiencies and spin-dependent luminosities.
 - No jet reconstruction required.

STAR

10/6/21

$$A_{UT} \cdot sin(\varphi_{RS}) = \frac{1}{P} \cdot \frac{\sqrt{N \uparrow (\varphi_{RS}) N \downarrow (\varphi_{RS} + \pi)}}{\sqrt{N \uparrow (\varphi_{RS}) N \downarrow (\varphi_{RS} + \pi)}} - \sqrt{N \downarrow (\varphi_{RS}) N \uparrow (\varphi_{RS} + \pi)}}{\sqrt{N \uparrow (\varphi_{RS}) N \downarrow (\varphi_{RS} + \pi)}} + \sqrt{N \downarrow (\varphi_{RS}) N \uparrow (\varphi_{RS} + \pi)}}$$

$$\vec{p}_{h} = \vec{p}_{h_{1}} + \vec{p}_{h_{2}}$$

$$\vec{R} = \vec{p}_{h_{1}} - \vec{p}_{h_{2}}$$

$$\varphi_{s} = Angle between scattering plane and polarization of incident beam$$

$$\varphi_{R} = Angle between scattering plane and dihadron plane$$

$$\varphi_{RS} = \varphi_{R} - \varphi_{s}$$

$$N \uparrow (\downarrow) = \# of pion pairs when beam polarization up(down)$$

$$P = Average beam polarization$$

Phys. Lett. B 780 (2018) 332

Asymmetry Extraction

- Two oppositely charged pions in the final state are paired if they are close in $\eta \phi$ space.
- space. ϕ_{RS} is divided into 16 bins of uniform bin-width in the range $[-\pi, +\pi]$ and $N \uparrow (\downarrow)$ in the transmission of the space. each ϕ_{Rs} bin is counted.
- The angle ϕ_{RS} modulates the A_{UT} by $sin(\phi_{RS})$.
- For each kinematic bin, the cross-ratio is calculated for each ϕ_{RS} and fitted with a ``sin" function.
- The amplitude of this sin fit gives the A_{UT} .

$$A_{UT} \cdot sin(\varphi_{RS}) = \frac{1}{P} \cdot \frac{\sqrt{N \uparrow (\varphi_{RS})N \downarrow (\varphi_{RS} + \pi)} - \sqrt{N \downarrow (\varphi_{RS})N \uparrow (\varphi_{RS} + \pi)}}{\sqrt{N \uparrow (\varphi_{RS})N \downarrow (\varphi_{RS} + \pi)} + \sqrt{N \downarrow (\varphi_{RS})N \uparrow (\varphi_{RS} + \pi)}}$$

 π

Statistical Error Projection

Figure of Merit (P²L_{int}) for 2017 data is ~15 times larger than that of 2011 data.
 The statistical precision improvement by about a factor of 4 is expected.

STAR

10/6/21

Summary

- IFF A_{UT}, of final state pion pairs, as functions of various kinematic observables (η, p_T, M_{inv}) is expected to be sensitive to transversity.
- The IFF study of STAR 2017 data is now underway; a larger $p^{\uparrow}p$ data sample from 2017 will increase the statistical precision compared to prior measurements using 2011 data.
- Results of this analysis will help to probe transversity at much higher Q^2 and test the universality of the mechanism which produces azimuthal correlations amongst SIDIS, e^+e^- , and $p^\uparrow p$ collisions.
- Planning for unpolarized di-hadron cross-section measurement, which could reduce uncertainties in transversity extraction.

