Transverse Spin-Dependent Azimuthal Correlation of Charged Pion Pairs in $p^{\uparrow}p$ Collisions at \sqrt{s} = 510 GeV at STAR

Sixth Joint Meeting of the Nuclear Physics Divisions of the APS and JPS Nov 26 – Dec 1, HAWAII, 2023

Navagyan Ghimire (For the STAR Collaboration) 11/29/2023

Supported in part by

Office of Science

Motivation

Parton Distribution Functions (PDFs) :

At leading twist three collinear PDFs describes the spin structure of nucleon

_	Quark Polarization			
Nucleon Polarizatior		Unpolarized	Longitudinal	Transverse
	Unpolarized	$f_1(x)$		
	Longitudinal		$g_1(x)$	
	Transverse			$h_1(x)$

Transversity PDF

C. Cocuzza et. al., arXiv:2306.12998 [hep-ph]

- $\succ h_1(x)$ describes the transversely polarized quarks inside transversely polarized nucleon
- \succ Less known from experiments than $f_1(x)$ and $g_1(x)$
- Chiral-odd quantity
- Extraction requires coupling to another chiral-odd distribution, such as Collins or Interference Fragmentation Functions (FFs)

Significance and Applications of Transversity

- Essential input for beyond the Standard Model Calculation, such as neutron electric dipole moment and nuclear beta decay, through the determination of quark tensor charge(δq) and iso-vector tensor charge(g_T)
 - $\delta q = \int_0^1 dx h_1^{q_v}(x)$; $h_1^{q_v}(x) \equiv h_1^q h_1^{\overline{q}}$ valance quark distribution
 - $\circ \quad \boldsymbol{g}_T = \boldsymbol{\delta} \boldsymbol{u} \boldsymbol{\delta} \boldsymbol{d}$
 - One of the few observables involving transverse polarization where experiments can be compared with lattice QCD.
- Quark orbital angular momentum is directly related to difference between helicity and transversity.
- > To test the universality of the mechanism generating azimuthal correlations across SIDIS, e^+e^- , lattice QCD, and $p^\uparrow p$ collisions.

C. Cocuzza et. al., arXiv:2306.12998 [hep-ph]

Transversity $(h_1(x))$ in $p^{\uparrow}p$ Collisions

> Independent measurement of $H_1^{\not <}$ is required from e^+e^- experiments (e.g. BELLE)

11/29/23

> D_1 is least known, specifically for gluon fragmentation (New constrain from STAR at \sqrt{s} =200 GeV, Refer to B. Pokhrel's talk 11/29, DNP/JPS HAW23)

Relativistic Heavy Ion Collider(RHIC)

STAR

Solenoidal Tracker At RHIC (STAR)

Magnet :

Uniform magnetic field of 0.5 T

Barrel Electromagnetic Calorimeter(BEMC) :

- $|\eta| < 1, 0 \le \phi \le 2\pi$
- Event triggering

Time Projection Chamber(TPC) :

- $|\eta| < 1, 0 \le \phi \le 2\pi$
- Charge determination and particle momentum reconstruction
- PID via measuring ionization energy loss

Time Of Flight(TOF) :

- $|\eta| < 1, 0 \le \phi \le 2\pi$
- Stopwatch for particles
- Helps to improve PID

A_{UT} at STAR

A non-zero A_{UT} signal has been observed against different kinematic observables $(\eta_{pair}, p_{T_{pair}}, M_{inv})$ of the pion pairs $(\pi^+\pi^-)$ in final state.

- STAR, Phys. Rev. Lett. 115, 242501 (2015)
- STAR, Phys. Lett. B 780 (2018) 332

11/29/23

Refer to B. Pokhrel's Talk 11/29, DNP/JPS HAW23

- STAR results play a crucial role in constraining the global fit of transversity.
 - First extraction of $h_1(x)$ from global analysis of ep and pp data using STAR 2006 A_{UT} result.
 - JAM collaboration incorporated both STAR 2006 and 2011 A_{UT} result for their global analysis to extract $h_1(x)$ and g_T in their recent 2023 paper.
- STAR completed taking another large pp dataset at 508 GeV ($L_{int}(pb^{-1})\sim 400$) in 2022 and is planning to take another pp 200 GeV dataset in 2024.

C. Cocuzza et. al., arXiv:2306.12998 [hep-ph]

Analysis details for A_{UT} measurement

- \succ A_{IIT} is measured using a transversely polarized beam colliding with another unpolarized beam (integrating over all spin \vec{s}_a **Scattering Plane** states). **Di-hadron Plane Polarized beam** φs *p*_{beam} $\overline{p}_{h,1}$ Two hadrons in final state allow to relate spin with di-hadron momentum. $\overrightarrow{s_a} \cdot (R \times \overrightarrow{p_h})$ \vec{p}_1 \succ Two oppositely charged pions $(\pi^+\pi^-)$ in the final state are R *p*h,2 paired. \succ Ensure the direction of R is consistently oriented from ϕ_{R} π^{-} to π^{+} (or vice versa) throughout the analysis. **Unpolarized beam** ϕ_s = Angle between scattering plane and polarization of incident beam($\vec{s_a}$) ϕ_R = Angle between scattering plane and dihadron plane STAR, Phys. Lett. B 780 (2018) 332 $\vec{p}_h = \vec{p}_{h_1} + \vec{p}_{h_2}$
 - $\vec{R} = \vec{p}_{h_1} \vec{p}_{h_2}$ $\phi_{RS} = \phi_R \phi_S$

Analysis details for A_{IIT} measurement

π

-π

- For a symmetric detector like STAR (in azimuthal space),
 - A_{UT} can be extracted from cross-ratio formula for different kinematic

variables $(M_{inv}^{\pi^{+}\pi^{-}}, p_{T}^{\pi^{+}\pi^{-}}, \eta^{\pi^{+}\pi^{-}})$.

Free from effects related to detector efficiencies and spin-dependent luminosities.

$$A_{UT} \cdot sin(\phi_{RS}) = \frac{1}{P} \cdot \frac{\sqrt{N \uparrow (\phi_{RS})N \downarrow (\phi_{RS} + \pi)} - \sqrt{N \downarrow (\phi_{RS})N \uparrow (\phi_{RS} + \pi)}}{\sqrt{N \uparrow (\phi_{RS})N \downarrow (\phi_{RS} + \pi)} + \sqrt{N \downarrow (\phi_{RS})N \uparrow (\phi_{RS} + \pi)}}$$

- \blacktriangleright Two oppositely charged pions in the final state are paired if they are close (<0.7) in $\eta \phi$ space.
- \blacktriangleright The angle ϕ_{RS} modulates the A_{UT} by $sin(\phi_{RS})$.
- ϕ_{RS} is divided into 16 bins of uniform bin-width in the range $[-\pi, +\pi]$ and $N \uparrow (\downarrow)$ in each ϕ_{RS} bin is \geq counted.
- \blacktriangleright For each kinematic bin, the cross-ratio is calculated for each ϕ_{RS} and fitted with a sinusoidal function.
- \blacktriangleright The amplitude of this sinusoidal fit gives the A_{IIT} .

11/29/23

 \succ A_{IIT} is extracted for Blue and Yellow beams separately and the final result is weighted average.

Particle Identification (PID) at STAR

- At STAR PID is done by measuring average specific ionization energy loss $\left\langle \frac{dE}{dx} \right\rangle$ in TPC.
- When the dE/dx vs p bands for two different particle types are close together or cross, TOF is extremely useful for PID.
 OF detector is capable of separating proton from kaon and pion for momenta up to 3 GeV/c.

AUT Results

 A_{UT} as a function of $\eta^{\pi^+\pi^-}$

- $\succ A_{UT}$ increases with $\eta^{\pi^+\pi^-}$
 - Forward direction $(\eta^{\pi^+\pi^-} > 0)$ probes higher x, valence region, where $h_1^q(x)$ is sizable, hence A_{UT} is large.
 - Backward direction $(\eta^{\pi^+\pi^-} < 0)$ probes lower *x* resulting lower A_{UT} signal.
- Systematic uncertainties arising from the impurity of the sample and trigger biasing effect against quark-jets have been investigated.

A_{UT} Results

 A_{UT} as a function of $p_T^{\pi^+\pi^-}$ in different $M_{inv}^{\pi^+\pi^-}$ bins

Strong $p_T^{\pi^+\pi^-}$ dependence of A_{UT} has been found in the forward $\eta^{\pi^+\pi^-}$ direction in all $M_{inv}^{\pi^+\pi^-}$ bins.

Stronger rise in A_{UT} signal around ρ meson mass (~0.8 GeV/c²) region.

Signal is stronger in forward $(\eta^{\pi^+\pi^-} > 0)$ direction and small in backward $(\eta^{\pi^+\pi^-} < 0)$ direction.

A_{UT} Results

 A_{UT} as a function of $M_{inv}^{\pi^+\pi^-}$ in different $p_T^{\pi^+\pi^-}$ bins

A_{UT} Results

 A_{UT} as a function of $M_{inv}^{\pi^+\pi^-}$ for highest $p_T^{\pi^+\pi^-}$ bin and $\eta^{\pi^+\pi^-} > 0$

- > STAR's latest measurement of A_{UT} from 2017 dataset exhibits a notably higher level of precision.
 - Statistical and systematic precision is significantly improved by the new result.
- ► A_{UT} from STAR 2017 dataset is consistent with previous STAR 2011 measurement and theory prediction from SIDIS, e^+e^- data.

Summary and Outlook

- > Di-hadron correlation asymmetry A_{UT} of final state pion pairs, as functions of various kinematic observables (η , p_T , M_{inv}), is expected to be sensitive to transversity.
- > New STAR 2017 IFF A_{UT} measurement has higher level of precision and is consistent with previous STAR 2011 measurement.
- ➤ Results of this analysis helps to extract transversity, tensor charge and test the universality of the mechanism which produces azimuthal correlations across SIDIS, e^+e^- , and $p^\uparrow p$ collisions.
- Planning for precision measurement of IFF asymmetries for pions/Kaon from 2017+2022 dataset.
- Planning for unpolarized di-hadron cross-section measurement at 500 GeV, which could reduce uncertainties in transversity extraction.

