Transverse Spin Dependent Azimuthal Correlations of Charged Kaon Pairs in $p^{\uparrow}p$ Collisions at $\sqrt{s} = 200$ GeV at STAR 2

1

3

Anuja Khanal for the STAR Collaboration Temple University, Philadelphia, PA, USA

Abstract

Transversity, $h_1^q(x)$, a leading twist parton distribution function, describes the transverse spin distribution of quarks in a transversely polarized proton. It is a fundamental component of nucleon 6 spin structure and is loosely constrained by global fits. As a chiral odd function, $h_1^q(x)$ can only be 7 accessed when coupled with another chiral odd partner, such as interference fragmentation function 8 (IFF) or Collins fragmentation function. This coupling of $h_1^q(x)$ and IFF leads to a measurable 9 azimuthal correlation asymmetry (A_{UT}) of hadron pairs in final state. The STAR experiment at 10 RHIC has measured non-zero A_{UT} for $\pi^+\pi^-$ in polarized proton-proton $(p^\uparrow p)$ collision, using data 11from 2006 and 2015 at $\sqrt{s} = 200$ GeV and from 2011 and 2017 at $\sqrt{s} = 500/510$ GeV. The precise 12 determination of A_{UT} , along with unpolarized di-hadron cross section in $p^{\uparrow}p$ collisions, can aid in 13 constraining $h_1^q(x)$ in global analysis. Measurements of di-hadron A_{UT} and cross section with other 14 hadron species provide additional flavor sensitivity; measurements with K^+K^- provide access to $h_1^q(x)$ 15 of strange quarks. We will present an update on A_{UT} and cross section for K^+K^- pairs based on 16 2015 $p^{\uparrow}p$ dataset at $\sqrt{s} = 200$ GeV in the mid-pseudorapidity region ($|\eta| < 1$). 17