Rapidity Dependence of π^{\pm} , K^{\pm} , p, and \bar{p} Production in BES-II $\sqrt{s_{NN}} = 7.7$ to 27 GeV Au+Au Collisions at STAR

Matthew Harasty For the STAR Collaboration

June 28, 2023

Abstract

1	The first phase of the Beam Energy Scan (BES-I) at the Relativis-
2	tic Heavy Ion Collider (RHIC) covered a range of energies from $\sqrt{s_{NN}}$
3	= 7.7 to 200 GeV, which ended in 2014. The success of the BES-I
4	program justified a new energy scan (BES-II) with higher statistics
5	and detector upgrades. This BES-II analysis will extend the measure-
6	ments of transverse mass spectra and production yields of π^{\pm} , K^{\pm} ,
7	p, and \bar{p} beyond the mid-rapidity results of BES-I at $\sqrt{s_{NN}} = 7.7$
8	to 27 GeV. The transverse mass spectra are crucial to pin down the
9	location of each collision energy at chemical freeze-out on the QCD
10	phase diagram. We will also present a study of the relative particle
11	yields in different rapidity regions, which will be used to investigate
12	how the chemical freeze-out temperature and chemical potentials vary
13	with rapidity. Our results indicate that we can sample an area of the
14	QCD phase diagram in temperature and baryon chemical potential by
15	varying not only the collision energy, but also rapidity and centrality,
16	which will aid in the search for the critical point.