RAPIDITY DEPENDENT FIXED-TARGET PION SPECTRA AT $\sqrt{s_{NN}} = 3.0, 3.5, and 4.5 GeV$ FROM STAR

Brooke Haag- LBNL/ UC Davis For the STAR Collaboration (Presented by Daniel Cebra) Presented at the Annual Meeting of the Division of Nuclear Physics October 23-26, 2013

Newport News, VA

BERKELEY LAB

10.26.03

MOTIVATION

- Minimum in the width of the pion rapidity distribution, indicative of a softening of the EOS expected during first order phase transition
- The goals are then to cover a broad rapidity range at low colliding energies

M. Bleicher hep-ph/0509314, H. Petersen nucl-th/0611001, A. Rustamov arXiv:1201:4520

FIXED-TARGET EVENTS

EVENT SELECTION

KINEMATIC CALCULATIONS

Collision Energy (GeV)	Single Beam Energy	Single Beam Pz (GeV/c)	Fixed Target \sqrt{s}	Single Beam Rapidity	Center of Mass Rapidity
19.6 Au+Au	9.8	9.76	4.47 Au+Al	3.04	1.52
II.5 Au+Au	5.75	5.67	3.53 Au+Al	2.51	1.25
7.7 Au+Au	3.85	3.74	2.99 Au+Al	2.10	1.05

$$\begin{array}{l} \sqrt{(s_{NN})} &= \sqrt{(2m^2+2Em)} \\ m = 0.9315 \; GeV/c^2 \, ; E = 9.8 \; GeV \\ \sqrt{(s_{NN})} &= 4.47 \; GeV \\ \end{array} \\ p_z &= \sqrt{(E^2-m^2)} = 9.76 \; GeV/c \\ y_{beam} &= 0.5*[ln(E+p_z)/(E-p_z)] \\ y_{beam} &= 3.0 \\ y_{cm} &= 1.5 \end{array}$$

RAW YIELD EXTRACTION AND CORRECTIONS

The dE/dx distributions for negative particles were fit for defined rapidity and m_t-m_0 bins. Efficiency and other detector effects.

Electrons could be easily be separated from the π⁻s.
Kaons would overlap in the forward rapidity slides, however the mid-rapidity K⁻/π⁻ ratio is less than 2%
even fewer anti-protons

10.26.03

√s_{NN} = 3.0 GeV

•Each set of points is a different rapidity slice; bottom to top: 0.0< y < 0.1 to 1.5< y <1.6

•Curves are offset by powers of ten

• The nucleonnucleon center-ofmass rapidity slice is indicated in red

10.26.03

√s_{NN} = 3.5 GeV

•Each set of points is a different rapidity slice; bottom to top: 0.0< y < 0.1 to 1.5< y <1.6

•Curves are offset by powers of ten

• The nucleonnucleon center-ofmass rapidity slice is indicated in red

10.26.03

√s_{NN} = 4.5 GeV

•Each set of points is a different rapidity slice; bottom to top: 0.0< y < 0.1 to 1.5< y <1.6

•Curves are offset by powers of ten

• The nucleonnucleon center-ofmass rapidity slice is indicated in red

10.26.03

Rapidity Density Distributions

 The rapidity density distributions have been measured from target rapidity to the nucleonnucleon center-ofmass rapidity.

 The distributions are fit with Gaussians.

 dN/dy distributions for Au_{Like}+Al may not peak at zero.

10.26.03

CONCLUSIONS AND OUTLOOK

• We have made the first measurement of broad rapidity dependence of spectra in STAR

• This proof of principle study demonstrates we *can make the dale* measurement, which is an important measurement indicative of the softening of the equation of state and a first-order phase transition

• We are looking forward to fixed target run as we are primed to make the dale measurement with Au+Au collisions and dedicated trigger (currently in development)

• STAR is an excellent detector, still doing important physics as we push its capabilities beyond expectations