

Forward sTGC Tracker Prototyping and Performance Test for the STAR Upgrade

Yingying Shi (史迎迎), for the STAR collaboration Shandong University

2020 Fall Meeting of the APS Division of Nuclear Physics

Outline

1. Motivation

- 2. small-strip Thin Gap Chambers (sTGC)
- 3. Forward sTGC Tracker (FTT) prototype design and production procedure
- 4. Quality assurance
- 5. Performance test
- 6. Summary

Motivation

Forward Tracking System (FTS) upgrade at forward rapidity (2.5 < η <4) is ongoing at STAR to address fundamental questions about cold QCD physics program. <u>arXiv:1602.03922</u>

Forward Tracking System (FTS):
 Forward Silicon Tracker (FST) (3 silicon disks).

Forward sTGC Tracker (FTT) (4 sTGC disks).

- Forward sTGC tracking requirements:
 - 4 Tracking points
 - Position resolution (<200um)

small-strip Thin Gap Chamber (sTGC)

-original designed by the ATLAS experiment

V. Smakhtin et al., NIM.A, 598 (2009) 196–200 A. Abusleme et al., NIM.A, 817(2016) 85–92

FST's talks

- FN.00004: Laser Test Stand for Silicon Detectors , Xu Sum and Zhenyu Ye
- <u>RK.00005: STAR Forward Silicon Tracker Upgrade Status, Xu Sun</u>
- <u>RK.00007: STAR Forward Silicon Tracker: Characterizing Prototype Module</u> <u>Performance with Cosmic Rays and Simulation Studies</u>, Gavin Wilks

sTGC

sTGC layout-side-view

- Anode: 50µm gold-plated tungsten wire, wire pitch 1.8mm, the wire tension 350g;
- Cathode: graphite epoxy mixture
- Readout: copper strips, perpendicular to anode wires, outside of cathode

Garfield++ simulation sTGC structure and electric field

Ionization avalanche

The charged particles pass through sTGC and ionize gas and generate electron ion pairs, which will generate avalanche and output signals when drifting to the anode wire.

11/1/2020

DNP2020, Yingying Shi (史迎迎)

sTGC prototype design and status

Three versions of sTGC prototype have been built in Shandong University.

30cm*30cm square

60cm*60cm square

~55cm*55cm pentagon

Readout electronics used for STAR TPX Readout electronics used for STAR TPX Readout based on VMM chips

- 30cm*30cm square prototype finished in Oct. 2018, delivered to BNL in Jan. 2019, installed in STAR on Jun. 2019
- 60cm*60cm square prototype finished in Jan. 2019, delivered to BNL in Jul. 2020, installed in STAR
- 55cm*55cm pentagon prototype finished in Oct. 2020, ongoing cosmic ray testing (close to final design)

STAR 🖈

11/1/2020

STAR 🛧

Glue the frame and support bar

Wire winding

Pre-test high voltage

11/1/2020

11/1/2020

DNP2020, Yingying Shi (史迎迎)

11/1/2020

STAR 🖈

Quality assurance: X-ray scan and high voltage burning STAR 🛠

X-ray scan require FWHM < 20%

High voltage burning with stable current < 500nA

High voltage burning: Leakage current distribution

60cm*60cm prototype

Working gas: 45%n-Pentane + 55%CO₂

- Outside the active area a)
- The support part b)
- Active area C)

X-ray scan meets the requirements.

11 hours leakage current tracking a)

b) HV=3200V

Leakage current meets the requirements.

11/1/2020

DNP2020, Yingying Shi (史迎迎)

12

Detection efficiency

11/1/2020

DNP2020, Yingying Shi (史迎迎)

STAR 🖈

Position resolution

Position resolution requirement < 200um.

- 1. Select the event where the vertical angle is $[-1^\circ, 1^\circ]$.
- **2.** Vertical X: Angle_x is $[-1^\circ, 1^\circ]$ & angle_y is not select.
- **3.** Vertical Y: Angle_y is $[-1^\circ, 1^\circ]$ & angle_x is not select.
- 4. No rotation and shift alignment.

Position resolution of 60cm*60cm prototype is about 140um at 2.7kV.

11/1/2020

DNP2020, Yingying Shi (史迎迎)

STAR 🛧

Summary

- 1. Forward Tracking System (FTS) upgrade at RHIC STAR is ongoing.
- 2. Three versions of the sTGC module have been designed and produced at Shandong University.
- 3. 98% detection efficiency has been achieved by 30cm*30cm and 60cm*60cm prototype.
- 4. 60cm*60cm prototype tested 140um position resolution under 2700V.
- 5. Pentagon prototype is ready for cosmic ray testing at Shandong University.

Future plan:

Mass production of sTGC will start from Nov. 2020

and will completed at Apr. 2021.

Thanks for your attention!

Formula calculate:

In the same production environment, it is assumed that the position resolution of each layer of sTGC is the same σ .

Position resolution in X direction

Expect point : Mid_X layer (X_{0x}, Y_{0x}, Z_{0x})

Measurement point : (X_{3x}, Z_{3x}) , (X_{1x}, Z_{1x}) and (X_{2x}, Z_{2x})

Intrinsic position resolution : σ

Because the spacing of the three-layer sTGC in the test is not uniform, the weight $a \neq b$.

	X-plane	mm	Y-plane	mm
station3	Z _{3x}	66	Z _{3y}	77.0
station2	Z_{2x}	30.7	Z _{2y}	41.7
station1	Z _{1x}	0	Z _{1y}	11

$$X_{ox} = \frac{35.3}{66} X_{1x} + \frac{30.7}{66} X_{3x}$$

$$X_{residual} = \frac{35.3}{66} X_{1x} + \frac{30.7}{66} X_{3x} - X_{2x} \quad \text{(Same y direction)}$$
Error propagation calculate:
$$\sigma = \frac{\sigma_{residual}}{\sqrt{a^2 + b^2 + 1}} = \frac{\sigma_{residual}}{1.2257}$$

11/1/2020