Measurements of Hypernuclei Production and Their Properties in Heavy-Ion Collisions at STAR

Yuanjing Ji, for the STAR collaboration

Lawrence Berkeley National Laboratory

July 1, 2023

Hypernuclei, bound states of nuclei with one or more hyperons, serve as a natural labo-1 ratory to investigate the hyperon-nucleon (Y-N) interaction, an important ingredient for the 2 equation-of-state (EoS) of nuclear matter. Precise measurements of hypernuclei properties 3 and their production yields in heavy-ion collisions are crucial for the understanding of the 4 strength of the Y-N interaction and their production mechanisms. The strangeness popula-5 tion factor, $S_{\rm A} = ({}^{\rm A}_{\rm A}{\rm H}/{}^{\rm A}{\rm He})/(\Lambda/p)$ (A=3,4), is of particular interest as it directly relates to 6 the ratio of light nuclei and hypernuclei coalescence parameters. Moreover, it is suggested 7 that S_A might be sensitive to the onset of deconfinement. The STAR Beam Energy Scan II 8 program and isobar collisions offer a great opportunity to investigate energy and system size 9 dependence of hypernuclei production. 10

In this talk, we present new measurements on transverse momentum (p_T) , rapidity (y), and centrality dependence of ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, and ${}^{4}_{\Lambda}$ He production yields in Au+Au collisions from $\sqrt{s_{\rm NN}} = 3$ to 27 GeV, as well as in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{\rm NN}} = 200$ GeV. Strangeness population factors $S_{3,4}$ as functions of collision energy, centrality, p_T , and y are also reported. In addition, we present new measurements on ${}^{4}_{\Lambda}$ He and ${}^{5}_{\Lambda}$ He lifetimes. These results are compared with phenomenological model calculations, and the physics implications on the hypernuclei production mechanism and properties of Y-N interaction are discussed.