Hadron Production at $\sqrt{s_{NN}} = 19.6 \ GeV \ Au + Au$ Collisions at STAR Samantha Brovko University of California, Davis For the STAR Collaboration

Outline

- Phase Diagram
- Chemical Equilibrium
- 19.6 GeV Au+Au in 2001
 - Comparison to SPS
 - Results from STAR in 2001
- NEW 19.6 GeV Au+Au in 2011
 - Statistics, Time of Flight, Particle Identification
 - Particle Ratios: π^+/π^- and K^+/K^-
 - Extracted Coulomb potential and overall π^+/π^- ratio
- Outlook
- Preliminary Results

Nuclear Matter: Phase Diagram

- Form QGP in ultra-relativistic heavy ion collisions
- Mapping the phase diagram with Beam Energy Scan at RHIC
 - Characterize phase transition, T_{kin} , T_{ch} , and μ_B

Nuclear Matter: Chemical Equilibrium

- Utilize identified particle distributions to determine kinetic freeze-out temperatures
- Use several particle ratios to determine μ_B and $T_{ch},$ chemical freeze-out parameters
 - Goal is to compare many particle species' ratios
 - More accurate ratios lead to more accurate μ_B

$$\mu_i = (\mu_B B_i) - (\mu_S S_i) - (\mu_{I_3} I_3)$$
$$n_i(T, \mu_i) \sim \exp \frac{\mu_i - m_i}{T}$$
$$\frac{N_i}{N_j} \sim \exp \left(\frac{\mu_{i,ch} - \mu_{j,ch}}{T_{ch}} - \frac{m_i - m_j}{T_{ch}}\right)$$

Braun-Munzinger, Heppe, Stachel Phys.Lett.B465.15-20. 1999 Kaneta, Xu, QM04 nucl-th/0405068

STAR, 2001: 19.6 GeV Au+Au

The central mid-rapidity spectra are displayed against the most comparable SPS spectra

DNP 26-29 October 2011 - SGBrovko - STAR Collaboration

T and μ_B at STAR and SPS

Without efficiency and acceptance corrections, freeze-out parameters cannot be extracted from 2011 19.6 GeV Au+Au data.

2006 Phys.Rev.C 73 034905

New STAR, 2011: 19.6 GeV Au+Au

- Compare 0-5% from 2011 to 0-10% from 2001 central events
- Minimum bias • data collection
 - 10% of total 2011 dataset analyzed
- **Statistics** improve particle fits
- Time of Flight extends PID to higher momentum than dE/dx

Pion mass assumption

 $2.8 \ln \left(\frac{dE}{dx} \times 10^6 \right) + 1.5$

2001

~285k

~43k

~5k

0.25 T

No

Yes

Supports

+ Ladder

2001

10

2011

~145 M

~14.6 M

~74k

0.5 T

Yes

Yes

Supports

only

π

4

TOF

TPC

SVT

$\frac{\pi^{+}}{\pi^{-}}(m_{T}-m_{\pi}) = R \frac{\exp\left[\left(E+V_{\text{eff}}\right)/T_{\pi}\right]-1}{\exp\left[\left(E-V_{\text{eff}}\right)/T_{\pi}\right]-1} \cdot J Ratio as a function of transverse kinetic energy with transformed B-E distribution energy$
--

- Net positive charge in the collision zone
 - Expanding spherical source \rightarrow effective potential
- Coulomb potential (V_c) of the source modifies momentum distribution
 - Greater effect for low-momentum π
- R initial ratio from initial yields, unmodified by the coulomb source
- Extracted parameters include initial ratio R and the full coulomb potential V_c

$$\frac{\pi^{+}}{\pi^{-}} (m_{T} - m_{\pi}) = R \frac{\exp\left[\left(E + V_{\text{eff}}\right)/T_{\pi}\right] - 1}{\exp\left[\left(E - V_{\text{eff}}\right)/T_{\pi}\right] - 1} \cdot J \text{ Ratio as a function of transverse kinetic energy with transformed B-E distribution}$$
$$J = \frac{E - V_{\text{eff}}}{E + V_{\text{eff}}} \frac{\sqrt{\left(E - V_{\text{eff}}\right)^{2} - m_{\pi}^{2}}}{\sqrt{\left(E + V_{\text{eff}}\right)^{2} - m_{\pi}^{2}}} \longleftarrow \text{ Jacobian of the transformation}$$

- Net positive charge in the collision zone
 - Expanding spherical source \rightarrow effective potential
- Coulomb potential (V_c) of the source modifies momentum distribution
 - Greater effect for low-momentum $\boldsymbol{\pi}$
- R initial ratio from initial yields, unmodified by the coulomb source
- Extracted parameters include initial ratio R and the full coulomb potential V_c

$$\frac{\pi^{+}}{\pi^{-}} (m_{T} - m_{\pi}) = R \frac{\exp\left[\left(E + V_{\text{eff}}\right)/T_{\pi}\right] - 1}{\exp\left[\left(E - V_{\text{eff}}\right)/T_{\pi}\right] - 1} \cdot J \text{ Ratio as a function of transverse kinetic energy with transformed B-E distribution}$$
$$J = \frac{E - V_{\text{eff}}}{E + V_{\text{eff}}} \frac{\sqrt{\left(E - V_{\text{eff}}\right)^{2} - m_{\pi}^{2}}}{\sqrt{\left(E + V_{\text{eff}}\right)^{2} - m_{\pi}^{2}}} \qquad \text{Jacobian of the transformation}$$
$$V_{\text{eff}} (\gamma_{\pi} \beta_{\pi}) = V_{C} \left(1 - e^{-E_{\max}(\gamma_{\pi} \beta_{\pi})/T_{p}}\right) \qquad \text{Effective Coulomb potential accounting for the reduced charge seen by low momentum } \pi$$

- Net positive charge in the collision zone
 - Expanding spherical source \rightarrow effective potential
- Coulomb potential (V_c) of the source modifies momentum distribution
 - Greater effect for low-momentum $\boldsymbol{\pi}$
- R initial ratio from initial yields, unmodified by the coulomb source
- Extracted parameters include initial ratio R and the full coulomb potential V_c

$$\frac{\pi^{+}}{\pi^{-}} (m_{T} - m_{\pi}) = R \frac{\exp\left[\left(E + V_{\text{eff}}\right)/T_{\pi}\right] - 1}{\exp\left[\left(E - V_{\text{eff}}\right)/T_{\pi}\right] - 1} \cdot J \text{ Ratio as a function of transverse kinetic energy with transformed B-E distribution}$$
$$J = \frac{E - V_{\text{eff}}}{E + V_{\text{eff}}} \frac{\sqrt{\left(E - V_{\text{eff}}\right)^{2} - m_{\pi}^{2}}}{\sqrt{\left(E + V_{\text{eff}}\right)^{2} - m_{\pi}^{2}}} \qquad \text{Jacobian of the transformation}$$
$$V_{\text{eff}} (\gamma_{\pi} \beta_{\pi}) = V_{C} \left(1 - e^{-E_{\text{max}}(\gamma_{\pi} \beta_{\pi})/T_{p}}\right) \qquad \text{Effective Coulomb potential accounting for the reduced charge seen by low momentum } \pi$$
$$E_{\text{max}} (\gamma_{\pi} \beta_{\pi}) = \sqrt{\left(m_{p} \gamma_{\pi} \beta_{\pi}\right)^{2} + m_{p}^{2}} - m_{p} \qquad \text{Maximum kinetic energy of the corresponding } \pi \text{ velocity}}$$

- Net positive charge in the collision zone
 - Expanding spherical source \rightarrow effective potential
- Coulomb potential (V_c) of the source modifies momentum distribution
 - Greater effect for low-momentum $\boldsymbol{\pi}$
- R primordial ratio from initial yields, unmodified by the coulomb source
- Extracted parameters include initial ratio R and the full coulomb potential V_c

STAR, 2011: New 19.6 GeV Au+Au

• Fits to published WA98 and E866 data

STAR 🖈

- Use TOF data above 0.5 GeV/c^2 , TPC data below that for Y11 STAR data
- Extracted ratio including V_c is different from ratio via integrated yields, 0.965 + / 0.01 in 2001

STAR, 2011: 19.6 GeV Au+Au

Kaons identified with TOF only
K⁺/K⁻ ratio fits to 1.59 +/- 0.02

STAR 🖈

- Y1 ratio is 1.64 + 7.005, results are consistent
- Ratio >1 indicates 19.6 GeV in the region where associated production contributes to K⁺ yield

Preliminary Results & Outlook

- New 2011 dataset is better than test run in 2001
 - Time of Flight detector extends range in p_T for PID
 - More statistics to reduce errors
- Given only part of the dataset has been analyzed
 - Pion ratio comparable to similar SPS energies
 - Coulomb potential of the source is $V_c = 8.07 + -0.61$ MVolts
 - Kaon ratio falls between 11.5 and 39 GeV ratio
 - Ratio > 1 indicates associated production contributes to K⁺ yield
 - Systematic studies are underway
- Will produce corrected spectra, freeze-out parameters and dN/dy soon for 2011 19.6 GeV Au+Au dataset
- Thank you!

Back-up

T and mB for STAR and SPS

- Tabulated values
- Rapidity windows + correction factors in next slide
 - To compare datasets with similar acceptances and rapidity selections

Energy (Expt)	T _{ch}	μ_{B}	μ _B (J.C.)
6.27 (SPS)	134(5)	470(13)	482
7.62 (SPS)	142(4)	410(18)	425
7.7 (STAR)	150(12)	362(39)	422
8.76 (SPS)	145(3)	382(9)	386
11.5 (STAR)	160(14)	277(36)	316
12.32 (SPS)	152(5)	296(10)	300
17.27 (SPS)	156(3)	247(9)	229
19.6 (STAR '01)	157(8)	187(19)	206
39 (STAR)	165(13)	98(22)	112

2006 Phys.Rev.C 73 034905

$$\mu_B(\sqrt{s_{NN}}) = \frac{1.308 \text{GeV}}{1+0.273 \text{GeV}^{-1}\sqrt{s_{NN}}}$$

Correcting the Comparisons

Centrality (Np) Effect				
Collaboration	System	Otrig/Oine l	<npart></npart>	Ratio
STAR	Au+Au	0-10%	337	1.000
NA49	Pb+Pb	0-5%	357	1.059
NA44	Pb+Pb	0-3.7%	340	1.009
WA98	Pb+Pb	0-10%	330	0.979

Studied the rapidity densities, then determine the effect of the rapidity slice for each particle

<u>Particle</u>	<u>Experiment</u>	<u><y></y></u>	<u>Ratio</u>
π–	NA49	-0.1	0.997
π-	NA44	0.4	0.96
π–	WA98	-0.55	0.926
π+	NA44	0.4	0.926
π0	WA98	-0.3	0.978
К-	NA49	0	1
К-	NA44	0.15	0.991
К-	WA98	-0.8	0.782
K+	NA49	0	1
K+	NA44	0.15	0.993
p-bar	NA49	-0.3	0.963
p-bar	NA44	-0.45	0.92
р	NA49	-0.3	0.993
р	NA44	-0.45	0.984

Particle	dN/dy (y=0)	σ	р
π-	180+/-5	1.40+/-0.03	
π +	164+/-4	1.44+/-0.04	
K-	17.4+/-1.6	1.14+/-0.10	
K+	31.2+/-2.1	1.25+/-0.13	
p-bar	3.5+/-0.6	1.10+/-0.26	NA49 rapidity density data
р	33.9+/-1.7	2.50+/-0.35	N(A661, 45c (1999)

Daniel Cebra, QM2008 Jaipur

STAR, 2011: 19.6 GeV Au+Au

- 2001 and new 2011 datasets are consistent
 - No feed-down corrections

STAR 🖈

- Extracted ratio including V_c is different from ratio via integrated yields, 0.965 +/- 0.01 in 2001
 - Will modify particle ratio fits to extract $\mu_{\rm B}$

Coulomb Potential

- Fits to 2001 data and 2011 data without low $m_T bins$
- 2011 Extracted ratio is consistent with low m_T bins
 - Will modify particle ratio fits to extract μ_B

Fit Parameters and Chi²

