

The STAR Experiment

The STAR Experiment at RHIC focusses on studying nuclear matter and nuclear structure through the collisions of heavy ions and spinpolarized protons. One region of interest are effects due the transverse momentum structure of partons in the proton and their rapidity / x dependence on, specifically how the Collins effect changes for different kinematic regions. This is accomplished by the large rapidity coverage of the STAR detector. But the forward rapidity region has been not well covered until recently.

STAR Forward Upgrade

The purpose of the STAR forward upgrade is to cover a rapidity region on 2.8 to 4. to access high and low-x partons. Below we show the latest prediction for the transvers single spin asymmetries for π + and π - at different forward rapidities and \sqrt{S} . Measuring these asymmetries could finally explain the underlying science of the large SSA A_N for π^0 s at forward rapitities.

Assessing the Performance of the STAR Forward Calorimeter System

Noah Mitchell of Abilene Christian University for the STAR Collaboration

HCAL and ECAL

The two primary subsystems of the Forward Upgrade are the hadronic (left) and electromagnetic (right) calorimeters. Both can be pictured below, providing us with a more complete picture of the energies of particles in the forward region. To ensure we get high quality data for polarized pp run in 2022, we have been testing both very extensively over run-2021, examples are pedestals and the readout with the LED.

For this analysis, we used a C++ ROOT analysis code. The method of implementation was to read in the files into a vector, and then iterate over that vector to produce graphs. The opening of all the files was done in TGraph. Since Tgraph has some built in parsing capabilities, we took our files and directly defined what each column of data would be (string, float, etc.) Since TGraph is capable of parsing data, this is perfectly fine for slow controls information, like the current.

ROOT Analysis

To analyze the efficiency of the HCAL and ECAL systems, LED and Pedestal data were taken with the instruments during runs. This was done to ensure that the noise was staple across different runs, so that the measurements will be of high quality come the 2022 run of STAR. Here is a comparison between two runs, which is just a sample from the 157 graphs that were made. This run indicates that there was minimal differences between the pedestal across two runs. We can extrapolate from this information that there was not any noticeable damage due to radiation done to the new components in the Forward Calorimeter System during our 2021 run.

DEPARTMENT OF ENGINEERING AND PHYSICS

Analysis Code

One of our next steps at STAR is to take this program and having the graphs be posted to the FCS monitor to have them regularly available, instead to have them existing locally, or only at the online cluster. Another plan moving forward is to make the program more efficient in how it organizes the data being taken and representing them, possibly by using a tree or tuple system instead of graphing directly through the TGraph. This would also probably be a more efficient for opening the data files. Below is an example of the files created

The calorimeter systems appears to not show any time dependence for the ratios for pedestal and LED data for different data, with a few outliers. This means that we should get excellent data come next year's run in 2022.

ABILENE CHRISTIAN UNIVERSITY

www.acu.edu

Next Steps

ame	ped	pedrms	led	ledrms	rms/led	fla	ags
023 r02c02 Dep00Ch00 F20/0/00/3	94.87	0.62	1774.20	68.54	0.0105	0	Good
N024 r02c03 Dep00Ch01 F20/0/01/2	42.76	0.63	1611.60	66.01	0.0099	0	Good
N025 r02c04 Dep00Ch02 F20/0/01/3	67.39	0.63	1957.20	75.07	0.0128	0	Good
N026 r02c05 Dep00Ch03 F20/0/02/2	62.12	0.65	1935.60	76.42	0.0137	0	Good
N045 r03c02 Dep00Ch04 F00/0/00/1	3619.45	0.38	30.00	0.00	-1.6667	5	Ped Led
N046 r03c03 Dep00Ch05 F00/0/01/0	58.50	0.63	1870.20	70.51	0.0110	õ	Good
N047 r03c04 Dep00Ch06 F00/0/01/1	34.66	0.62	1890.00	62.93	0.0068	õ	Good
N048 r03c05 Dep00Ch07 F00/0/02/0	96.70	0.62	1993.20	71.54	0.0108	õ	Good
V067 r04c02 Dep00Ch08 F00/0/00/3	67.28	0.60	1743.00	69.13	0.0110	õ	Good
V068 r04c03 Dep00Ch09 F00/0/01/2	87.43	0.61	1926.00	71.50	0.0112	õ	Good
V069 r04c04 Dep00Ch10 F00/0/01/3	67.14	0.62	2323.20	82.52	0.0110	õ	Good
N070 r04c05 Dep00ch11 F00/0/02/2	53 12	0.61	2073 60	66 17	0.0140	õ	Good
1070_104005_Dep00Ch11_F00/0/02/2	59 28	0.01	2256 60	83 53	0.0070	õ	Good
1005_105C02_Dep00Ch12_101/0/00/1	51 74	0.01	1440 00	60.30	0.0145	õ	Good
1090_105005_Dep000115_101/0/01/0	63 92	0.00	1572 00	60.30	0.0072	ñ	Good
1091_105C04_Dep00Ch14_101/0/01/1	60.60	0.00	1997 19	76.89	0.0005	õ	Good
1111 r06c02 Dop00Ch15_F01/0/02/0	01.09	0.02	2052 60	75.75	0.0141	6	Good
112 r06c03 Dep00Ch10_F01/0/00/3	30 50	0.04	1/35 20	61 99	0.0125	6	Good
112_r06c04_Dep00Ch17_r01/0/01/2	79 50	0.01	1433.20	54 45	0.0085	6	Good
114 r06c05 Dop00Ch10 F01/0/01/3	/0.50	0.00	1047 00	67 55	0.0051	6	Good
1132 r07c02 Dop00Ch19_F01/0/02/2	49.17	0.00	1/03 00	50 70	0.0090	0	Good
134 r07c02 Dep00Ch20 r22/0/00/1	67 20	0.04	12403.00	50.70	0.0059	0	Good
134_10/C03_Dep00Ch21_F22/0/01/0	51 55	0.03	1242.00	50.41	0.0003	0	Good
135_r07c04_Dep00Ch22_F22/0/01/1	21.22	0.07	1511.40	29.21	0.0001	0	Good
156_r00c05_Dep00Ch23_F22/0/02/0	49.41	0.07	1054.80	00.00	0.0094	0	Good
155_108C02_Dep00Ch24_F22/0/00/5	/1.//	0.00	12/0.80	20.83	0.0007	0	Good
150_108C03_Dep00Ch25_F22/0/01/2	54.51	0.02	1162.80	48.21	-0.0015	0	Good
V15/_r08c04_Dep00Ch26_F22/0/01/3	80.18	0.64	1200.00	52.92	0.0023	0	Good
158_r08c05_Dep00Cn27_F227070272	53.34	0.05	1//4.20	63.64	0.0077	0	Good
V177_r09C02_Dep00Cn28_F057070071	/8.50	0.61	1134.00	52.99	0.0026	0	Good
V178_r09C03_Dep00Cn29_F05/0/01/0	65.82	0.63	1226.40	46.34	-0.0030	0	Good
V1/9_r09C04_Dep00Ch30_F05/0/01/1	/3.15	0.65	14/8.40	62.94	0.0088	0	Good
V180_r09C05_Dep00Cn31_F05/0/02/0	61.48	0.71	1/11.80	65.43	0.0090	0	Good
V02/_r02c06_Dep01Cn00_F20/0/02/3	/5.64	0.61	1530.00	63.50	0.0088	0	Good
V028_r02c07_Dep01Ch01_F207070372	63.1/	0.60	1246.20	50.10	0.0001	0	Good
V029_r02c08_Dep01Ch02_F20/0/03/3	83.78	0.67	1461.60	55.00	0.0034	0	Good
V030_r02c09_Dep01Ch03_F20/0/04/2	44.94	0.60	1764.00	59.70	0.0055	0	Good
V049_r03c06_Dep01Ch04_F00/0/02/1	43.42	0.57	2033.40	68.36	0.0090	0	Good
V050_r03c07_Dep01Ch05_F00/0/03/0	85.80	0.63	1288.80	52.98	0.0023	0	Good
V051_r03c08_Dep01Ch06_F00/0/03/1	63.34	0.65	1350.60	52.65	0.0020	0	Good
<pre>N052_r03c09_Dep01Ch07_F00/0/04/0</pre>	71.25	0.63	1632.60	59.58	0.0059	0	Good
<pre>N071_r04c06_Dep01Ch08_F00/0/02/3</pre>	111.29	0.59	1713.00	62.57	0.0073	0	Good
1072_r04c07_Dep01Ch09_F00/0/03/2	87.39	0.60	1267.80	51.37	0.0011	0	Good
1073_r04c08_Dep01Ch10_F00/0/03/3	66.04	0.61	1363.80	50.81	0.0006	0	Good
<pre>\U0/4_r04c09_Dep01Ch11_F00/0/04/2</pre>	66.73	0.62	1438.80	52.64	0.0018	0	Good
<pre>N093_r05c06_Dep01Ch12_F01/0/02/1</pre>	53.33	0.62	1749.60	66.39	0.0094	0	Good
004 -05-07 0016-13 501 00000	71 70		1107 60	40 70	0 0000	~	Cood

Conclusion

