

Study of Uranium nuclei deformation via flow-mean transverse momentum correlation at STAR

Chunjian Zhang

(For the STAR Collaboration)

Oct. 30, 2020

Shape-flow transmutation

Smaller R (fixed multiplicity, same N_{part})

Larger pressure gradient higher collision rate of partons

Faster collective expansion Larger radial flow

Larger mean p_T

Fluid cell follows hydro calculation

S. Gavin et al., PRC95. 064905(2017) P. Bozek et al., PRC96. 014904(2017)

Linear response: $v_n \sim \epsilon_n$

H. Niemi et al., PRC87, 054901(2013) F.G. Gardim et al., arXiv:2002.07008v1 G. Giacalone, PRC102, 024901(2020)

Different sign of $v_2\{4\}$ in UCC.

STAR, Phys. Rev. Lett. 115, 222301 (2015)

Nuclear deformation

Hartree-Fock-Bogolyubov (Gogny D1S effective interaction)

For a deformed nucleus, the leading form of nuclear density becomes:

$$ho(r, heta) = rac{
ho_0}{1 + e^{(r-R_0(1+ rac{m{eta_2}}{2}Y_{20}(heta))/a}}$$

Deformation is quantified by quadrupole β_2 parameter

A few values based on the nuclear structure approximations

The β_2 of ²³⁸U still have a large uncertainty:

reference	Raman et al.	Löbner et al.	Möller et al.	Möller et al.	CEA DAM	Bender et al.
method	exp	exp	FRDM	FRLDM	HFB	"beyond mean field"
eta_2	0.286	0.281	0.215	0.236	0.30	0.29

[Raman et al., ADNDT78,1(2001)]

[Möller et al., ADNDT59,185(1995)]

[Hilaire & Girod, EPJA(2007)]

[Löbner et al., NDT A7, 495 (1970)]

[Möller et al., 1508.06294]

[Bender et al., nucl-th/0508052]

The β_2 of ¹⁷⁹Au is small and can be used as baseline

reference	Möller et al.	Möller et al.	CEA DAM
method	FRDM	FRLDM	HFB
eta_2	-0.131	-0.125	-0.10

[Möller et al., 1508.06294]

[Möller et al., ADNDT59,185(1995)]

[Hilaire & Girod, EPJA(2007)]

Or BNL nuclear data center

G. Giacalone, "Phenomenology of nuclear structure in HI"

Observables

Pearson coefficient: v_n - p_T three particle correlator

dynamical quantities with self-correlation removed

Full event

2-subevent

3-subevent

 $|v_2,p_T|\eta|<1.0$

 $v_2^{
m A}~\eta < -0.1$

 $v_2^{
m B}~\eta>0.1$

 $v_2^{
m A}~\eta < -0.35$

 $|v_2^{
m B}|\eta| < 0.3$

 $v_2^{
m C} \eta > 0.35$

subevent method is crucial for non-flow suppression

The STAR detector

Dataset:

Au+Au@200GeV, Run11 U+U@193GeV, Run12

• $\langle p_T \rangle$, v_n , N_{ch} are measured within:

$$0.2 < p_T < 2.0 {
m GeV/c}$$
 and $0.5 < p_T < 2.0 {
m GeV/c}$ $|\eta| < 1.0$

• Centrality is defined by N_{ch} ($|\eta|$ <0.5).

The track efficiency is estimated from embedding data

v_n vs. $\langle p_T \rangle$ in ultra central (0-0.5%) centrality

v_n	System	slope
v_2	U + U	$-3.5\% \pm 0.1\%$
v_2	Au + Au	$2.6\%\pm0.2\%$
v_3	U + U	$1.7\%\pm0.2\%$
v_3	$\mathrm{Au} + \mathrm{Au}$	$1.9\%\pm0.2\%$

An anticorrelation is observed between v_2 and $\langle p_T \rangle$ in top 0.5% U+U collisions while not in Au+Au.

 v_3 and $\langle p_T \rangle$ correlations are positive and similar for Au+Au and U+U collisions.

After incorporating the statistical fluctuation due to finite multiplicity, the TRENTo model can reproduce data quantitively.

Dynamical v_n^2 variance and $\langle p_T \rangle$ fluctuations

Clear difference due to flow fluctuation.

Clear difference due to size fluctuation.

Covariance $Cov(v_n^2, [p_T])$

$$\rho\left(v_n^2,[p_T]\right) = \frac{\operatorname{cov}\left(v_n^2,[p_T]\right)}{\sqrt{\operatorname{Var}\left(v_n^2\right)_{\mathrm{dyn}}\langle\delta p_T\delta p_T\rangle}} \\ \operatorname{cov}\left(v_n^2,[p_T]\right) \equiv \left\langle \frac{\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)}{\sum_{i\neq j\neq k}w_iw_jw_k}\right\rangle_{\mathrm{evt}} \\ \frac{\left(\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)\right)}{\sum_{i\neq j\neq k}w_iw_jw_k} \\ \operatorname{cov}\left(v_n^2,[p_T]\right) \equiv \left\langle \frac{\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)}{\sum_{i\neq j\neq k}w_iw_jw_k}\right\rangle_{\mathrm{evt}} \\ \frac{\left(\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)\right)}{\sum_{i\neq j\neq k}w_iw_jw_k} \\ \operatorname{cov}\left(v_n^2,[p_T]\right) \equiv \left\langle \frac{\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)}{\sum_{i\neq j\neq k}w_iw_jw_k}\right\rangle_{\mathrm{evt}} \\ -\left(\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)\right) \\ \operatorname{cov}\left(v_n^2,[p_T]\right) \equiv \left\langle \frac{\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)}{\sum_{i\neq j\neq k}w_iw_jw_k}\right\rangle_{\mathrm{evt}} \\ -\left(\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)\right) \\ \operatorname{cov}\left(v_n^2,[p_T]\right) \equiv \left\langle \frac{\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)}{\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)}\right\rangle_{\mathrm{evt}} \\ +\left(\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)\right) \\ \operatorname{cov}\left(v_n^2,[p_T]\right) = \left\langle \frac{\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)}{\sum_{i\neq j\neq k}w_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)}\right\rangle_{\mathrm{evt}} \\ +\left(\sum_{i\neq j\neq k}w_iw_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)\right) \\ +\left(\sum_{i\neq j\neq k}w_iw_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)\right\rangle_{\mathrm{evt}} \\ +\left(\sum_{i\neq j\neq k}w_iw_iw_jw_ke^{in\phi_i}e^{-in\phi_j}(p_{T,k}-\langle\langle p_T\rangle\rangle)\right)$$

There is a clear difference in $Cov(v_2^2, [p_T])$ between U+U and Au+Au but they are consistent for $Cov(v_3^2, [p_T])$ indicating the effect of deformation.

$\text{Pearson coefficient } \rho\!\left(v_{n}^{2}, \left[p_{T}\right]\right) \quad \frac{\rho\!\left(v_{n}^{2}, \left[p_{T}\right]\right) = \frac{\operatorname{cov}\!\left(v_{n}^{2}, \left[p_{T}\right]\right)}{\sqrt{\operatorname{Var}\left(v_{n}^{2}\right)_{\operatorname{dyn}} \langle \delta p_{T} \delta p_{T} \rangle}}$

 $ho(v_2^2,[p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $ho(v_3^2,[p_T])$ is always positive in Au+Au and U+U collisions.

$$hoig(v_n^2,[p_T]ig) = rac{ ext{cov}ig(v_n^2,[p_T]ig)}{\sqrt{ ext{Var}ig(v_n^2ig)_{ ext{dyn}}\langle\delta p_T\delta p_T
angle}}$$

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

 $\rho(v_2^2,[p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $\rho(v_3^2,[p_T])$ is always positive in Au+Au and U+U collisions.

$$hoig(v_n^2,[p_T]ig) = rac{ ext{cov}ig(v_n^2,[p_T]ig)}{\sqrt{ ext{Var}ig(v_n^2ig)_{ ext{dyn}}\langle\delta p_T\delta p_T
angle}}$$

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

 $ho(v_2^2,[p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $ho(v_3^2,[p_T])$ is always positive in Au+Au and U+U collisions.

$$hoig(v_n^2,[p_T]ig) = rac{ ext{cov}ig(v_n^2,[p_T]ig)}{\sqrt{ ext{Var}ig(v_n^2ig)_{ ext{dyn}}\langle\delta p_T\delta p_T
angle}}$$

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

 $\rho(v_2^2,[p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $\rho(v_3^2,[p_T])$ is always positive in Au+Au and U+U collisions.

$$hoig(v_n^2,[p_T]ig) = rac{ ext{cov}ig(v_n^2,[p_T]ig)}{\sqrt{ ext{Var}ig(v_n^2ig)_{ ext{dyn}}\langle\delta p_T\delta p_T
angle}}$$

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

 $\rho(v_2^2, [p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $\rho(v_3^2, [p_T])$ is always positive in Au+Au and U+U collisions.

An hierarchical behavior shows the β_2 dependence in Uranium $\rho(v_2^2, [p_T])$ but not in $\rho(v_3^2, [p_T])$.

$$hoig(v_n^2,[p_T]ig) = rac{ ext{cov}ig(v_n^2,[p_T]ig)}{\sqrt{ ext{Var}ig(v_n^2ig)_{ ext{dyn}}\langle\delta p_T\delta p_T
angle}}$$

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

 $\rho(v_2^2, [p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $\rho(v_3^2, [p_T])$ is always positive in Au+Au and U+U collisions.

An hierarchical behavior shows the β_2 dependence in Uranium $\rho(v_2^2, [p_T])$ but not in $\rho(v_3^2, [p_T])$.

The sign-change is due to deformation effect and it quantify the Uranium deformation value around 0.28 with large uncertainty.

Pearson coefficient $\rho(v_n^2,[p_T])$ and effects of non-flow

Standard method is consistent with subevent methods at high N_{ch}.

Subevent calculations could decrease non-flow contributions in peripheral collisions.

Pearson coefficient $\rho \! \left(v_n^2, [p_T] \right)$ in different p_{T} selection

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

Features are same for $0.5 < p_T < 2 \text{GeV/c}$ as $0.2 < p_T < 2 \text{GeV/c}$.

Conclusions and outlooks

- 1. We presented flow and mean transverse momentum correlation from STAR that demonstrate a clear shape–flow transmutation.
 - Study of mean p_T fluctuation is also an intriguing possibility to probe nuclear deformation..
- 2. The sign-change behavior in Pearson coefficient $\rho(v_2^2, [p_T])$ in central U+U collisions could be used to constrain deformation parameters.
 - Subevent calculations could decrease non-flow contributions in peripheral collisions.
 - Main features are robust against p_T selection.
- 3. IP-Glasma+Hydro model partially reproduce the data with Uranium deformation parameter β_2 around 0.28 with large uncertainty.
- 4. Precise data-model comparison could be helpful to constrain the initial conditions such as nuclear deformation parameters, shear/bulk viscosity and speed of sound in EoS.
- 5. Heavy ion collisions open up an avenue for studying nuclear structure.

Thank you for listening.

$\rho \! \left(v_n^2, [p_T] \right)$ is not affected by non-flow

Standard method is consistent with subevent methods at high N_{ch}.

Subevent calculation could decrease non-flow contributions in peripheral collisions.

Pearson coefficient $\rho(v_n^2, [p_T])$ in 0.5< p_T < 2 GeV/c

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

Features are same for $0.5 < p_T < 2 \text{GeV/c}$ as $0.2 < p_T < 2 \text{GeV/c}$.