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• Want to better constrain x 
dependence of ΔG by using 
correlation measurements such 
as di-jet asymmetries 
• Need to show that the di-jet 
observable is well understood at 
STAR 
• Agreement between measured 
di-jet cross section and NLO pQCD 
predictions would give confidence 
that di-jets can be used in 
asymmetry measurements 2 

de Florian et al., PRL 101, 072001 (2008) 

Goal: Understanding Di-jets at STAR 



Jet Reconstruction 
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Jet Levels MC Jets Anti-KT Algorithm: 
• Radius = 0.6 
• Less sensitive to underlying event and 
pile-up effects 
• Implemented using FastJet 
• Used in both data and simulation 
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Three Simulation Jet Levels:  
• Parton – Jets produced from hard 
scattered partons as well as ISR and FSR 
• Particle – Jets  produced from stable 
particles arising from fragmenting partons 
including beam remnants  
• Detector – Jets produced from simulated 
detector response to final state particles  



Di-jet Selection 
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1. Require Z-Vertex to be within ± 
90 cm 

2. Select all jets with -0.8 ≤ η ≤ 1.8 
and -0.7 ≤ det η ≤ 1.7 

3. Select 2 highest pT jets  
4. Require at least one jet fired the 

trigger   

After Di-jet is found, apply 
following cuts: 
• Cos(Δφ) ≤ -0.5 
• One jet neutral fraction < 1.0 
• Jet pT_high ≥ 8.0 Jet pT_Low ≥ 6.0 
• |η| ≤ 0.8, |det η| ≤ 0.7 
• Track pT ≤ 30 GeV or jet pT 
Balance 



Data – Simulation Comparisons 

M ≈ √{2pT3pT4[Cosh(Δη)-Cos(Δφ)]} 

pT Δη 

Cos(Δφ) 

Blue= Data 
Red = Simu 

• Simulation sample needed to unfold and 
correct raw data yields 
• Ignoring jet mass, di-jet mass depends on 
jet pT, jet pseudorapidity difference, and jet 
azimuthal angle difference 
• These quantities must match well in data 
and simulation to match di-jet mass 5 

pT [GeV/c] Δη 

Cos(Δφ) 



Data – Simulation Comparison 

Di-jet Mass 

Blue= Data 
Red = Simu 
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Di-jet Mass [GeV/c2] 



Unfolding Raw Yields 
• Raw di-jet yield must be corrected 
for detector resolution and 
acceptance effects – Unfolding 
 
• Utilize the Singular Value 
Decomposition (SVD) method ito 
unfold raw yield [arXiv:hep-
ph/9509307]  
 
• Use ‘Response Matrix’ to relate 
detector response to thrown 
particles 
 
• SVD a way of solving the linear 
system in a regularized way  
 
• SVD method implemented in 
RooUnfold package http://hepunx.rl.ac.uk/~adye/software/unfold/

RooUnfold.html 7 



Systematic Errors: Detector Response 

Tracking Efficiency Sys Track pT Sys 

• Evaluated three ‘Detector’ Systematics 
• Tracking Efficiency: 4%  
• Track pT Uncertainty: ± 1% 
• Tower Energy Scale Uncertainty: ± 3.7% 

• Systematic in each bin is the average 
between + and – systematic 
• These three and next systematic are added 
in quadrature to obtain final systematic band 

Tower Energy Sys 

Red = -Systematic/XSec 

Blue = +Systematic/XSec 
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Systematic Errors: Time Variation 

• Still under investigation but indications 
point to time variation in BBC luminosity 
monitor 
 
• VPD seems more stable but need absolute 
cross section in order to use as luminosity 
monitor 
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(Early–Full)/Full 

(Late-Full)/Full 
VPD Normalization 

• Cross Section appears to change over course 
of run 
 
• Extracting cross section from early and later in 
run gives different  results 
 
• Difference between early and late used as 
systematic 



Underlying Event and Hadronization 

Di-jet Mass [GeV/c2] 

Theoretical Cross Section 

Red = NLO pQCD Theory 
Blue = Theory + UEH 

• Extracted data cross section is 
compared to NLO pQCD theoretical 
calculation from deFlorian et al using 
CTEQ6M PDF 
 
• Theory calculations do not take into 
account underlying event or 
hadronization effects 
 
• Use difference between data cross 
section corrected to particle level 
and cross section corrected to parton 
level as contribution from UEH 
 
• Add this UEH contribution to 
theoretical cross section 
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Di-jet Cross Section Result 

Thickness of blue box represents 
error on theory determined by 
changing factorization and 
renormalization scales by factor 
of 0.5 and 2 

Thickness of vertical black 
hashing represents size of 
statistical error on the 
measurement  

Green hatched box is symmetric 
about data point and is the 
quadrature sum of all systematic 
errors 
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Conclusions 

• STAR has measured the mid-rapidity di-jet cross 
section at √s = 200 GeV using the Anti-kT jet algorithm 
 
• The measured cross section is in agreement with NLO 
pQCD theoretical predictions 
 
• Work continues on investigating and mitigating the 
time variation of the cross section due to changes in the 
luminosity monitor 
 
• The good agreement between data and theory gives 
confidence in future di-jet asymmetry measurements 
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Back-Up 
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STAR Detector 
Time Projection 
Chamber (TPC) 
Charged Particle 
Tracking |η|<1.3 

Barrel Electromagnetic 
Calorimeter (BEMC): 
|η|<1 

Endcap Electromagnetic 
Calorimeter: 
1<η<2 

h = - ln(tan(q/2)) 
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Data - Simulation Comparisons 
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Effect of Time Variation Systematic 

Red = Detector Systematics Only 

Black = Detector + Time Variation Systematics 
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