

J/ ψ production in p+p collisions at $\sqrt{s} = 500$ GeV from STAR

Qian Yang (for the STAR Collaboration)

University of Science and Technology of China Brookhaven National Laboratory

2015 Fall Meeting of the APS Division of Nuclear Physics , 28-31 October 2015, Santa Fe, New Mexico, USA

J/ψ in p+p collisions

 J/ψ is one of the simplest QCD bound states, but its production mechanism in p+p is not well understood.

Models:

- Color singlet model
- Color evaporation model
- non-relativistic QCD(NRQCD) approach- high p_T
- CGC+NRQCD applicable at low pT

Inclusive J/ψ production:

- prompt J/ψ
 - direct J/ ψ (~60%), feed down from ψ (2s)(~10%) and χ_c (~30%) decays.
- non-prompt J/ψ: B-mesons feed-down(10-25% at 4-12 GeV/c) STAR: Phys. Lett. B772(2013) 55

Measurement at 500 GeV provides additional constraints on models!!

The Solenoid Tracker At RHIC (STAR)

J/ψ→e+e⁻,μ+μ⁻ e:lηl<1, μ:lηl<0.5

MTD-trigger on and identify muons

> BEMC-trigger on and identify electrons

Charged particle multiplicity TPC-momentum and energy loss

TOF-measure

ii)_

Inclusive J/ψ yield

- Combinatorial background: like-sign pairs
- Correlated background: fitting Crystal ball function(signal) & expo
- Signal extraction: bin counting [2.7, 3.3] GeV/c²

low-p⊤ J/ψ J/ψ→μ+μ⁻

J/ψ cross section and x_T scaling

- Inclusive J/ψ cross section measured within 4<p_T<20 GeV/c.
 - NRQCD and CGC+NRQCD prediction both agree with data.

• x_T scaling of high-p_T J/ ψ observed in STAR at 200 and 500 GeV.

x_T scaling breaking - transition from hard to soft process.

Qian Yang

Yield ratio of $\psi(2s)$ to J/ψ

Charm production vs. event multiplicity

- Stronger-than-linear rise of open charm production vs event activity.
- Similar behavior seen for inclusive J/ψ at both mid- and forward- rapidity in p+p @7 TeV.

Several models:

- PYTHIA8 including Multi-Parton-Interaction contributions to c production underestimates yield at large multiplicity
- Percolation model with string screening rises quadratically at high multiplicity.
- EPOS 3 event generator: initial conditions followed by a hydrodynamical evolution

Similar at RHIC energies??

J/ψ yield vs. event activity

TofMult - Multiplicity of TOF matched tracks, $|\eta| < 0.9$

- Stronger-than-linear growth for relative J/ψ yield.
 - Soft and hard processes are correlated.
- **Different trends** for low and high $p_T J/\psi$.
- Similar trend at LHC and RHIC.

Compare with models

- PYTHIA8 describes the rising trend and p_T dependence in data.
- Percolation model also qualitatively reproduces trend in data.
- Measurement for higher
 multiplicity bins is in progress
 important to distinguish
 between models.

Summary

- First time measured J/ψ in di-muon channel at STAR.
- Inclusive J/ψ p_T spectra are measured above 4 GeV/c in p+p collisions at 500 GeV via di-electron channel. The spectra can be well described by NRQCD predictions.
- The relative J/ ψ yield grows rapidly as the charged particle multiplicity increases, and high-p_T J/ ψ grows faster than the low p_T J/ ψ
 - Similar trend as observed at LHC
 - PYTHIA8 and Percolation model can describe the observed trend in data.
 - Measurement in higher multiplicity bins is in progress
 important to distinguish between models.

Thank you

backup

J/ψ at forward rapidity

Forward upgrades in STAR:

- Forward Calorimeter System (2.5<η<4)
- Forward Tracking System (2.5<η<4)

p+p 200 GeV *L*~ 1 pb⁻¹ with100% tracking efficiency ~ 22k J/ψ in 2.5<η<4.8