Progress and Outlook of the STAR Fixed-Target Program APS DNP Meeting 2019 Crystal City, Virginia

Benjamin Kimelman for the STAR Collaboration

University of California - Davis

October 16, 2019

APS DNP - Crystal City, Virginia

- 2 STAR Fixed-Target Program
- (3) Evolution of π^- Acceptance
- 4 Strange Baryon Measurements
- 6 Conclusions

- In BES-I, STAR observed fluctuations that could be indicative of a critical point
- Theory predicts that critical fluctuations should return to the baseline as the energy drops but 7.7 GeV is the lowest realistic collider energy at RHIC
- The STAR Fixed-Target program (FXT) allows lower energies to be probed to provide coverage below the hinted critical point
- FXT also allows high statistics measurements of strange baryon momentum spectra and rapidity density distributions which have never been published at many of these energies

2 STAR Fixed-Target Program

3 Evolution of π^- Acceptance

4 Strange Baryon Measurements

5 Conclusions

STAR Fixed-Target Geometry

The STAR Fixed-Target

- Target located at z = 200 cm (in 2015, located at z = 210 cm)
- Target is 0.25 mm thick 1% interaction probability (in 2015, was 1mm thick)
- Target is held 2 cm below center of beam axis
- Collider filled with 12 bunches

Benjamin Kimelman (UC Davis)

October 16, 2019 6 / 21

STAR Fixed-Target Data Sets

$\sqrt{s_{NN}}$ (GeV)	<i>E_{beam}</i> (GeV)	Усм	Year Collected	Number of Good Triggers (Millions)
3.0	3.85	1.05	2018	360
3.0	3.85	1.05	2019	3.7
3.2	4.59	1.14	2019	200
3.9	7.3	1.37	2019	53
4.5	9.8	1.52	2015	1.3
7.7	31.2	2.10	2019	50

• Data will be collected at $\sqrt{s_{NN}} = 3.5$, 4.5, 5.2, 6.2, and 7.7 GeV in 2020

< 一型

STAR 🕁

Au+Au $\sqrt{s_{NN}} = 3.2$ GeV Vertex Location

- 2 STAR Fixed-Target Program
- (3) Evolution of π^- Acceptance
- 4 Strange Baryon Measurements
- 5 Conclusions

Au+Au $\sqrt{s_{NN}} = 3.2 \text{ GeV } \text{dE/dx}$

- Very good separation between particles
- Low energy means little contamination between particle species
- π⁻ dominate negatively charged particles

Benjamin Kimelman (UC Davis)

October 16, 2019 10 / 21

Au+Au $\sqrt{s_{NN}} = 3.0$ GeV Fixed-Target 2018 π^- Acceptance

Au+Au $\sqrt{s_{NN}} = 3.0$ GeV Fixed-Target 2019 π^- Acceptance

Au+Au $\sqrt{s_{NN}} = 3.2$ GeV Fixed-Target 2019 π^- Acceptance

Benjamin Kimelman (UC Davis)

October 16, 2019 13 / 21

Au+Au $\sqrt{s_{NN}} = 3.9$ GeV Fixed-Target 2019 π^- Acceptance

Au+Au $\sqrt{s_{NN}}$ = 4.5 GeV Fixed-Target 2015 π^- Acceptance

Benjamin Kimelman (UC Davis)

October 16, 2019 15 / 21

Au+Au $\sqrt{s_{NN}} = 7.7$ GeV Fixed-Target 2019 π^- Acceptance

Benjamin Kimelman (UC Davis)

October 16, 2019 16 / 21

- 2 STAR Fixed-Target Program
- 3 Evolution of π^- Acceptance
- 4 Strange Baryon Measurements

5 Conclusions

Strange Baryon Measurements

- The high statistics Fixed-Target data sets already collected and those planned in the rest of BES-II will allow for a high precision measurements of the Λ and Ξ^- (Ω^- ?) rapidity density distributions at these energies, many of which were never published by the AGS experiments
- These data along with statistical models¹ are used to predict the yield of the strange baryons at the STAR Fixed-Target energies

¹P. Braun-Munzinger et al. - Nucl. Phys. A 697, p. 902
 ²E895 - Nucl. Phys. A 698, p. 495
 ³E877 - Phys. Rev. C 63, 014902
 ⁴E891 - Phys. Lett. B 386, p. 496
 ⁵NA49 - Phys. Rev. Lett. 93, 022302
 ⁶STAR - arXiv:1906.03732 [nucl-ex]

October 16, 2019 18 / 21

$\sqrt{s_{NN}}$ (GeV)	Number of Top 5%	Estimate of Particle Count for Top 5% Centrality		
	Centrality Events	٨	Ξ	Ω^{-}
3	18M	1.4M	7k	35
3.2	10M	1.5M	10.5k	80
3.9	2.5M	1.5M	4k	200
4.5	200k	36k	52	< 10
7.7	2.5M	2.1M	17k	850

- π, K, and p efficiencies estimated using ratio of the measured yield to published data
- Expected Λ, Ξ⁻, and Ω⁻ yields estimated from published data or statistical models using the main charged decay channels and daughter PID efficiencies
- Estimated yield multiplied by number of top 5% centrality events expected assuming minimum-bias trigger

- 2 STAR Fixed-Target Program
- **3** Evolution of π^- Acceptance
- 4 Strange Baryon Measurements

5 Conclusions

- The STAR Fixed-Target program has started successfully and has already collected large amounts of data
- The acceptance of the STAR detector for Fixed-Target data is well understood and will allow us to achieve our physics goals
- We expect to perform high-statistics measurements of strange baryons and produce spectra and rapidity density distributions for Λ and Ξ^- , which have never been published at many of these energies

Backup

Benjamin Kimelman (UC Davis)

APS DNP - Crystal City, Virginia

October 16, 2019 22 / 21

Event and Track Selection Cuts

• Event selection

- Select on minimum-bias events (using mixture of EPD, BBC, and VPD triggers)
- $199 < V_z < 202 \ {
 m cm}$
- Track selection
 - Track projects back to the primary vertex (at target location)
 - Distance of Closest Approach (DCA) \leq 3

