

Beam-energy dependence of the azimuthal anisotropic flow from RHIC

Niseem Magdy Abdelwahab Abdelrahman (For the STAR Collaboration) University of Illinois at Chicago niseemm@gmail.com

This work is supported by the grant from doe office of science

Introduction

QCD Phase Diagram

- → Lattice QCD finds a smooth crossover at large T and $\mu_B \sim 0$ MeV
- > Various models find a strong 1st-order phase transition at large μ_B
- Strong interest in the theoretical calculations which span a broad (T, μ_B) domain.
 - ✓ Search for QCD critical point
 - \checkmark Search for signals of the 1-st order phase transition
 - ✓ Search for turn-off of the QGP signatures

Introduction QCD Phase Diagram Step-by-step on the QCD Phase Diagram

Beam-Energy Scan (BES-I) at RHIC

√s _{NN} (GeV)	Events (10%)	Year
200	350	2010
62.4	67	2010
54.4	1300	2017
39	39	2010
27	70	2011
19.6	36	2011
14.5	20	2014
11.5	12	2010
7.7	4	2010

Beam-Energy Scan (BES-II) at RHIC

	Collision Energy (GeV)				
	7.7	9.1	11.5	14.5	19.6
μ_B (MeV) in 0-5% central collisions	420	370	315	260	205
Fixed Target Energy (GeV)	3.0	3.2	3.5	3.9	4.5
Fixed Target μ_B (MeV)	721	699	666	633	589
Proposed Event Goals in BES-II		160	230	300	400
BES-I Events	4	N/A	12	20	36

Introduction

Anisotropic flow

Asymmetry in initial geometry \rightarrow Final-state momentum anisotropy (flow)

$$dN/d\varphi = 1 + 2 \sum_{n}^{\infty} v_n \cos(\varphi - \Psi_n)$$

► The flow harmonic coefficients (v_n) are influenced by eccentricities (ε_n) , fluctuations, speed of sound $(c_s(\mu_B, T))$, and specific shear viscosity $\frac{\eta}{s}(\mu_B, T)$

Comprehensive set of flow measurements are important for:

- ✓ Differentiate between initial-state models
- ✓ Aid the extraction of $\frac{\eta}{s}(T, \mu_B)$

Introduction The Solenoidal Tracker At RHIC

Time Projection Chamber

- ✓ Tracking and identification of charged particles
- ✓ Full azimuthal coverage
- ✓ $|\eta|$ <1 coverage

Short-range non-flow suppression

<u>Short — range</u>

-flow

Non

HBT

Decay

The v₂ vs. centrality at $\sqrt{s_{NN}} = 200$ GeV different using $\Delta \eta$ cuts

✓ Short-range non-flow effect reduced using $\Delta \eta > 0.7$ cut

Long – range

STAR Collaboration

Phys.Lett.B 784 2632 (2018)

Long-range non-flow suppression

 $v_{11}^{ab} = v_1^{even}(p_T^a) v_1^{even}(p_T^b) + \delta_{long}$

$$v_{11}(p_T^a, p_T^b) = v_1^{even}(p_T^a)v_1^{even}(p_T^b) - K p_T^a p_T^b$$

arXiv:1203.0931

 v_{11} in Eq(1) represents NxM matrix which we fit with N+1 parameters

 \succ v₁₁characteristic behavior gives a good constraint for $v_1^{even}(\mathbf{p}_T)$ extraction

> The characteristic behavior of $v_1^{even}(p_T)$ shows a weak centrality dependence

> The momentum conservation parameter, K, scales as $\langle N_{ch} \rangle^{-1}$

Flow harmonics

Similar characteristic behavior of $v_1^{even}(p_T)$ at all energies $> v_1^{even}(p_T)$ agrees with hydrodynamic calculations at 200 GeV

Beam-Energy Dependence of v_1^{even}

 $v_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - K p_T^a p_T^t$

The extracted v_1^{even} (Centrality) and the momentum conservation parameter at different beam energies

For different beam energies;

 $\succ v_1^{even}$ increases weakly as collisions become more peripheral

Momentum conservation parameter, K, scales as $\langle N_{ch} \rangle^{-1}$

Beam-Energy Dependence of v_1^{even}

$$v_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - K p_T^a p_T^t$$

STAR Collaboration PLB 784 2632 (2018)

The extracted v_1^{even} vs. $\sqrt{s_{NN}}$ at 0%-10% centrality

 $|v_1^{even}|$ shows similar values to v_3 at $0.4 < p_T < 0.7 (GeV/c)$

 $\geq \varepsilon_3 > \varepsilon_1$ $\checkmark v_3 \text{ has larger viscous damping effect than } v_1^{even}$

$|\eta| < 1$ and $|\Delta \eta| > 0.7$

Beam-Energy Dependence of v_n

The extracted $v_{n>1}$ (Centrality) at all BES energies

v_n(Centrality) has similar trends for different beam energies.
v_n(Centrality) decreases with harmonic order, n.

Beam-Energy Dependence of v_n

The extracted $v_{n>1}$ vs. $\sqrt{s_{NN}}$ at 0-40% centrality

> $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam energy. > $v_n(\sqrt{s_{NN}})$ decreases with harmonic order, n, (viscous effects).

Viscous Attenuation

PRC 84, 034908 (2011)	arXiv:1305.3341		
P. Staig and E. Shuryak.	Roy A. Lacey, et al.		
PRC 88, 044915 (2013)	arXiv:1601.06001		
E. Shuryak and I. Zahed	Roy A. Lacey, et al.		

Acoustic ansatz

- ✓ Sound attenuation in the viscous matter reduces the magnitude of $v_{n=2,3}$.
- Anisotropic flow attenuation:

From macroscopic entropy considerations:

$$S \sim (RT)^3 \sim \langle N_{Ch} \rangle$$
 then $RT \sim \langle N_{Ch} \rangle^{1/3}$
 $\ln\left(\frac{v_n}{\varepsilon_n}\right) \propto -\left(\frac{\eta}{s}\right) \langle N_{Ch} \rangle^{-1/3}$

Using two different harmonics:

$$\begin{bmatrix} \ln\left(\frac{v_n^{1/n}}{v_2^{1/2}}\right) + \ln\left(\frac{\varepsilon_2^{1/2}}{\varepsilon_n^{1/n}}\right) \end{bmatrix} \langle N_{Ch} \rangle^{1/3} \propto -A\left(\frac{\eta}{s}\right)$$
$$\beta'' = \ln\left(\frac{v_n^{1/n}}{v_2^{1/2}}\right) \langle N_{Ch} \rangle^{1/3} \propto -A\left(\frac{\eta}{s}\right)$$

Viscous coefficient

$$\beta'' = \ln\left(\frac{v_n^{1/n}}{v_2^{1/2}}\right) \langle N_{Ch} \rangle^{1/3} \propto -A\left(\frac{\eta}{s}\right)$$
 A: is constant

The viscous coefficient shows a non-monotonic behavior with beam energy

Summary

Comprehensive set of flow measurements were presented for Au+Au collision system at all BES energies with one set of cuts.

 \succ For v_n :

- ✓ v_n vs centrality indicates a similar trend for different beam energies.
- ✓ Momentum conservation parameter, K, scales as $(N_{ch})^{-1}$
- ✓ $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam energy.

The viscous coefficient shows a non-monotonic behavior with beam energy

For different beam energies, these comprehensive measurements provide additional constraints for theoretical models, as well as $\frac{\eta}{s}$ extraction.

