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1 Introduction

1 Introduction

The Universe in its very early stages was far different from the one we observe now. The aim of
contemporary heavy-ion physics is to recreate, study and understand the processes, that occurred
when the Universe was about 107"° s old, when baryons and mesons, the main constituents of our
world, became to exist. Ultra relativistic ion collisions, Au+Au at \/TNN =200 GeV for this work,
are used to recreate the hot and expanding environment in controlled laboratory conditions.

1.1 The Quark Gluon Plasma

The baryons and mesons, as it is well established, are composed of two particle families: the
quarks and the gluons. The quarks carry color charge, an additional quantum number, with possible
values of: red, green and blue. Three colored quarks form a colorless baryon and a quark and anti-
quark form a colorless meson. The force acting on color charges is called strong force and in
between quarks is carried by gluons. In the Standard Model, the strong interacting systems are
described by Quantum Chromo Dynamics (QCD). It is perception of gluons in the QCD, not only
as mediators, but also as color charge carriers, that gives the strong force its unique property; the
potential of strongly interacting quarks increases with their increasing distance. Hence the quarks
are normally confined into doublets or triplets and never have been observed separate in nature.

QCD predicts that special environment setup can lead into a state of matter, where colored quarks
and gulons are able to move freely, not bound into mesons or baryons. Since the strong force
decreases with decreasing quark distance, it may reach a value of asymptotic freedom, where the
strong binding is negligible. Perturbative QCD (pQCD) describes such system. Another approach is
to create extremely hot matter. With energy density increasing ~1GeV/fm’, which is equivalent to
temperature of = 170 MeV ', the hadronic matter undergoes a phase transition into another state of
matter, the Quark Gluon Plasma, where quarks and gluons are free form their confinement into
baryons and mesons. The points of phase transitions are predicted by Lattice QCD. Figure 1.1
shows steep rise of energy over temperature of a system when it crosses the critical temperature.
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Figure 1.1 Latice QCD calculations of energy over temperature of a quark system. Lines for 2
light, 2 light and one heavy or 3 light quarks are shown. Light = (u,u,d,d), heavy = (s,5)
Taken from [20].

1 the phase transition point is not well defined yet, research in this direction may be carried out by
upgraded RHIC in future years
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Figure 1.2 The nuclear matter phase diagram with indicated system evolution. Taken form [11].

1.2 Jets and patrticle correlations

Jets are showers of particles primarily originating from hard scattering of partons (meaning quarks
or gluons). Di-jets and triple jets have been observed. The special techniques, jet finders, are used to
observe jets in the detector data, due to large underlying background. In heavy ion collisions, the
particle correlation techniques are used. The output shows jets as a conical relatively high
transverse momentum (pr) particle shower around a leading particle with very high-pr

Energy deposed by propagating particle is absorbed in a distinct way by particles in the bulk.
When the medium undergoes expansion, the resulting particle properties are affected by previous
energy deposition. This creates specific correlation in production particle pr, energy and
pseudorapidity distribution. Particle correlation technique is a way to express such correlations
amongst properties of the production particles [20]. The particle correlations provide insight into
time before final hadronization, by exploiting information that is created before and propagated
through the hadronization period. In this way we can study the QGP properties. This work is based
on working with two particle pseudorapidity (An) and azimuth (A®) correlation of charged and
identified strane particles. The An x A® distribution and particle yields are studied.
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1.3 Jet quenching and medium response

Studies of particle production at the top RHIC energy \/m=200 GeV revealed a strong
suppression of inclusive transverse momentum (pr) distributions of identified light hadrons in
central Aut+Au collisions with respect to p+p, d+Au and peripheral Au+Au collisions [2,3]. This
suppression, commonly referred to as jet quenching, reaches in central Au+Au collisions a value of
about 0.2 and is present out to large transverse momenta (pr ~ 20 GeV/c ) [1]. The total baryon and
meson production is decreased in AutAu collisions in respect to p+p collisions. The magnitude of
baryon and meson production suppression is different for each particle family [1]. The baryon
production is suppressed less then the one of mesons [3] and a baryon/meson ratio, that increases up
to = 3 GeV/c and falls afterwards to meet p+p ratio close to 6 GeV/c may suggest, that the main
production source of mid-rapidity particles at intermediate pr could be parton recombination or and
coalescense [5, 6, 7, 8].

The parton recombination model favors creation of baryons over mesons due to a lower single
parton energy needed when one combines three partons into a baryon with certain energy, in
comparison with combining two partons into a meson with similar energy. This effect may explain
the increase of baryon/meson ratio shown on Figure 1.3.

In addition, two particle correlations in central Aut+Au collisions at RHIC show strong medium
modifications. The correlated spatial region close to leading particle is called near-side, the opposite
region is called far-side. The ridge shape is observed at the near side, the far side effects are
described later. A yield increase in An of correlated particles at near side was observed. The yield
increase in An is not observed in d+Au or p+p collisions. The increase, called ridge [9] due to its
long ridge-like shape Figure 1.4, is extending into large An and as it will be shown later in this
work, it appears constant for studied |An| < 2, it appears also constant for |An| <4 (Figure 1.5) [12].
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Figure 1.3 A/K’s ratio ratio measured in inclusive pr distributions, near-side jet and ridgelike
correlation peaks in Au+Au collisions together with this ratio obtained from inclusive pr spectra in
p+tp collisions. Taken from [1].
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The dependence of ridge yield on pr of trigger particle is also subject of this work.

Au+Au 0-10% STAR preliminary
h+h

Prassoc > 9€
@ S

Figure 1.4 Two particle correlation in pseudorapidity and azimuth shows increase in yield
pseudorapidity region [7].
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Figure 1.5 The ridge structure studied by the PHOBOS experiment for |[An| < 4. Range -4 < An <
-2 is shown. Ridge yield diminishes for less central collisions in -4 <An < -2. Taken from [12].
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A significant increase of lower pr particles was observed on away side, which comes from energy
loss of parton, that propagates through a thicker layer of medium. Figure 1.6 shows the correlated
yield distributions. There are several mechanisms of away side modification described. A parton
propagating with ultra-sonic speed through medium will produce a Mach shock waves, that will
increase correlated particle yield in certain angle. The other mechanism is described as deflected
jets. The away side parton is deflected in direction ®, that is random through different events and
thus creating broadening in A®, which shows after summing many events. Another mechanism, the
Cerenkov radiation, was suggested to produce the away side broadening, which is not a medium
response in real and it is not favored by recent research [13].
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Figure 1.6 Background subtracted (a),(b) A® and (c),(d) An distributions for pp and 0-5% central
Au+Au for 4<pr "8<6 GeV/c and two associated pr ranges. The subtracted background level for pr
=0.15-4 GeV/c (2-4 GeV/c) is 1/Nyig dNew /dA® = 1.4 (0.007) in pp and =211 (2.1) in 5-0% Au
+Au. The curve in (a) shows the shape of an [A — Bcos(A®)] function. The curves in (c),(d) are
Gaussian fits to the pp data. Taken from [14].
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2 The experimental setup

The STAR (Selenoidal Tracker at RHIC) experiment is located at the Brookhaven National
Laboratory on the RHIC (Relativistic Heavy Ion Collider) accelerator [22].

2.1 The RHIC

The RHIC accelerator has circumference of 3834 meters and is hexagonally shaped. Thanks to its
design of two separate rings, it is capable of colliding different types of particles. The experiments
PHENIX and STAR and already decommissioned PHOBOS and BRAHMS occupy four out of six
intersection points built [14]. The limiting energies are 200 GeV for Au+Au and 500 GeV for pp in
center of mass energy per nucleon pair \/ST/N . Runs have been carried out with limiting or lower
energies. This work takes data from the Vsyy=Y** GeV AutAu collisions of run IV and VII.

The ion accelerating cascade begins at Tandem Van de Graaff accelerator, where the ions are
stripped of electrons. The Booster Synchrotron is a next accelerating step on the way to third, the
Alternating Gradient Synchrotron, which is also the last step before injection into RHIC. The
protons accelerating chain begins in LINAC instead of Van de Graaff, the rest is similar.

NEW SUPFORT
B G

EQUP. AREAW
EXIT

WML Floyp PAR iy

~Tkm

HEAVYION "
BYEASS LINE MTE)

CaTAMOEM WAN DE GRASF
HEMY 10N SOURCE

Figure 2.1 BNL accelerator complex, taken from [14].
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2.2 The STAR experiment

The Solenoidal Tracker At RHIC is by design a detector with precise tracking and particle and
momentum identification. It is capable of measuring hadron production in large solid angle in
rapidity region close to center-of-mass.

The main detection chamber of the STAR experiment is the Time Projection Chamber (TPC). It is
capable of tracking and identification of charged particles. The Silicon Vertex Tracker, composed of
layers of silicon strip detectors and placed inside of TPC radius, that was supposed to enhance TPCs
tracking ability, was removed from the setup in 2008. Several modules of the Time Of Flight
detector are placed on the outside radius of TPC. TOF is to provide better identification of high
momentum particles. The Barrel Elecro-Magnetic Calorimeter is placed outside of the TOF layer.
BEMC and the Endcap EEMC provide ability to trigger on EMCAL sensitive particles, such as high
energy photons, electrons and electro-magnetically decaying hadrons. BEMC is also targeted to
study transverse energy of such particles. Other subdetectors present in the STAR experiment are:
Forward and Backward TPC, Silicon Strip Detector, Photon Multiplicity Detector and Forward Pion
Detector.
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Figure 2.2 The STAR detector taken from [15].



2 The experimental setup
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3 Barrel EMC and tower noise analysis

3 Barrel EMC and tower noise analysis

3.1 The detector

The barrel Electromagnetic Calorimeter (BEMC) is composed of 4800 towers each covering 0.05
in An and 0.05 in A®. BEMC covers full azimuth and (-1,1) pseudorapidity, which is equivalent to
full tracking TPC coverage. Towers are ordered into modules by 1x20 towers. There are 120
modules in azimuth and 2 modules in pseudorapidity next to each other.

The STAR EMC is a sampling calorimeter, and the core of the structure consists of a lead-
scintillator stack and a shower maximum detector situated approximately 5 radiation lengths from
the front of the stack. There are 20 layers of Smm thick lead and 21 layers of Smm thick scintillator.
[16]

The EMC endcaps, that cover (-2,2) in pseudorapidity are not used in the analysis. Only the barrel
EMC (BEMC) is used.

TPC

SVT CTB/TOF

>
iy _I-!ﬁ?!\ 24
Ui

Magnet Return —— Barrel

Magnet Coils

Figure 3.1 The BEMC (marked as barrel) in beam axis z projection.

The calorimeter is used for triggering purposes in this work. A high energetic particle registered by
BEMC is used as a leading particle. Other lower energetic particles registered by TPC are correlated
to the high energetic particle from BEMC.



3 Barrel EMC and tower noise analysis

3.2 Cleaning tower noise

Energy distribution of hits in towers is shown on Figure 3.2. It is obvious that some sources of
noise are present and must be removed from the stack. Especially the peak around 35 GeV is
suspicious. Various criteria were used to find and remove the noisy towers:

e Total hit count in a tower
e Hit count in a tower after low energy cut

e Energy distribution mean upper and lower limit after low energy cut

EMC hit energy hitenergy
Entries 1727358

[ Mean 5.194

= RMS 4.225

5 10 15 20 25 30 35 40 45 50
E [GeV]
Figure 3.2 Energy distribution of hits in BEMC towers in region of (2.5,50) GeV.

3.2.1 The hit count cut

The total hit count is a very simple criterion. Towers with a suspiciously large number of hits are
removed from the stack. The hit count distribution is shown on Figure 3.3. The value chosen as the
cut is 1000 hits, which removes 82 towers (1.71% towers) from the stack. There is a slight danger in
this cut, that there may be a tower noisy in low E < 5 GeV, but still with valid hits above this
threshold. Nevertheless, this was neglected due to low tower count removed. Three towers proved
to be heavily noisy (tower # 3711, 3720, 3840) with hit counts far over 10000. 353 towers (7.35%)

are without hits at all.
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EMC tower hit count [__hitcount | | [ EMC tower high hit count | hitcounthigh
Entries 4800 Entries 82
o 45 Mean  303.5 ] Mean 2348
Q RMS 193.9 o RMS 2067
g 40 3 S
b towers with 1000+ hits: 82 < 50 {_ovrtow |
towers with 0 hits: 353 tower3711: 61631
maximum hits in tower: 61631 40
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| il
100 200 300 400 500 600 700 800 900 1%00 2000 3000 4000 5000 6000 7000 8000 9000 10000
hits hits

Figure 3.3 BEMC hit count distribution below and above 1000 hits per tower.

3.2.2 The hit count cut after low energy cut

The total hit count is a good criterion, but it still may miss some less obvious noise. The energy
distribution on Figure 3.2 shows a rapid increase in hit counts with energies less than 5GeV. A tower
less noisy below 5 GeV may be more noisy in high energy area and still pass the total hit count
criterion, i.e. the noise production is more likely to not be constant through the energy spectrum.

Since the interesting trigger particles lay above 5GeV, it is a good idea to remove all hits below
this energy threshold and search for towers with suspiciously high hit count then. Figure 3.4 shows
hit count distribution after 5 GeV cut. Applying this criterion with threshold of 300 hits identifies 50
towers out of which 30 were identified by previous total hit count criterion.

|_EMC tower hit count with cut @5 GeV_ | hitcountcut
Entries 4800
0 60 Mean 110.7
g RMS 63.07
2
8

50

towers with 300+ hits: 50
towers with 0 hits: 357

maximum hits in tower: 8081

40

30

20

10

00 100 200 300 400 500 600 700 800 900

hits
Figure 3.4 BEMC hit count distribution in towers after application of minimum 5GeV energy cut.

3.2.3 The energy mean cuts

Another way to search for misbehaving towers is to study means of energy hit distribution for each
tower. It allows us to define towers with low hit cont but suspiciously high or low hit energy mean.
This can remove towers, which produce nothing but low level of noise. Figure 3.5 shows energy
mean distribution before and after 5GeV energy cut. It is favorable to use the 5 GeV energy cut due

11



3 Barrel EMC and tower noise analysis

to high hit counts in lower energies, which bias the mean distribution.

Thresholds chosen were 5.5 and 16 GeV, which identified 4 towers (0.83%), 2 crossing the high
threshold, 2 crossing the low thresholds. The 2 towers which cross the high threshold were already
identified by both previous criteria.

meanvaluescut
Entries 4800
Mean 9.243
RMS 1.469

EMC tower mean values | meanvalues
Entries 4800

= Mean 5.371
RMS 0.8847

EMC tower mean values with cut @5 GeV

maximum mean: 34.92

tower1433: 33.24
250

tower3407: 34.92

tower1405: 5.12

200

150

100

50 tower3445: 5.38
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Figure 3.5 BEMC hit energy mean distribution before and after application of 5GeV energy cut.

3.2.4 Tower hit spatial distribution dependence on energy

As shown on figure 3.6, the spatial distribution of hits is dependent on energy of particles in
pseudorapidity axis. Towers on high pseudorapidities tend to have significantly more hits then
towers close to n = 0. In region 5-8 GeV, there is increase in hit count of inner ( n = 0) towers. The
increase in tower hits in large pseudorapidities is due to photon conversion in material, which is
more concentrated in high pseudorapidity regions. Pseudorapidity cut | n | < 0.7 was introduced to
remove such hits.

3.2.5 Summary

The cuts were defined relatively strict to prevent any false signals in trigger particles. Resulting
tower drop reaches 104 towers (2.16%). Additional 357 towers (7.44%) give no hits in region above
5GeV. Fraction of BEMC hits dropped due to tower exclusion reaches 16%. Another 54% of BEMC
hits is dropped because of insufficient energy (less than 5GeV). BEMC hits available for further
reconstruction make abou 30% of total.

Second criterion, the hit with energy cut, proved to be important for pointing out additional towers
that may produce unwanted noise.
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| Emc trigger hit spatial distribution, 3-4 GeV, centrality 0-5% | | Emc trigger hit spatial distribution, 4-5 GeV, centrality 0-5% |
1

= 0
0.2
0.4
0.6
08
13 2 - 0 1 2 3 0
[

oL ; I|.-"

Figure 3.6 BEMC hit distribution in azimuth and pseudorapidity for different hit energies.
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Figure 3.7 Excluded towers. Red excluded due to multiple criteria match.
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Figure 3.8 High hit towers. Red — high hits, blue — high hits after 5 GeV cut, black — both criteria.
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‘ EMC towers with no hits |
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Figure 3.9 BEMC towers with no hits.
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Figure 3.10 A general noisy tower. Figure 3.11 A tower with noise around 35 GeV
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Figure 3.12 A normal tower. Figure 3.13 A high hit tower after energy cut
with abnormally high hit count above 5 GeV
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Figure 3.14 A high hit tower.
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4 TPC and identified particle cuts

4.1 The detector

The STAR TPC covers £1.8 in pseudorapidity units and is able to track particles with momenta
greater then 100 MeV/c. Physical dimensions of the barrel are 4.0 m in outer diameter and 0.5 m in
inner diameter and 4.2m in length. The barrel is divided into 12 sectors in ®. The barrel is filled
with 10% methane and 90% argon gas mixture (P10). Drift field is 135V/cm.

The TPC is used in this work for obtaining identified associated particles for Run VII data and for
obtaining associated as well as trigger particles for Run IV data.

= Sectors

Outer Field Cage
& Swupport Tube
Inner
Field
Cage

Sector
Support—Wheel

Figure 4.1 The TPC barrel.

4.2 The VO particles

V0 is a common name for particles with one strange or anti-strange quark (A, anti-A and K°), that
received the name due to their V shaped decay. The VO particles are neutral in charge and one of
their major decay channels is into two oppositely charged hadrons. Since the VO particles are
neutral in charge, one can not expect them to ionize TPC gas. Detection of VO particles is possible
through detection of their charged decay daughters, since decay length of VO particle is short and
most of them decay before reaching inner TPC radius. VO particle properties are shown in Table
4.1. Scheme of VO decay is shown on Figure 4.2.
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4 TPC and identified particle cuts

Particle | Quark Content | Mass (GeV) | Dominant Decay Mode | ¢7 (cm)
A wuds 1.116 p+7 1 ~64% 7.89
A wds 1.116 p+at i~ 64Y% 7.89
K? % d% + ds 0.498 at 4T ~69Y% 2.68

Table 4.1 VO particle properties [17]

Neg Daughter

Parent (V0) e

.\E)CA-P():, o T S ____'""-—-.________q______-%-%-

(Primary Vertex) Pos Daughter T~

DCA-V0 I

Decay Length

Figure 4.2 The scheme of VO decay.

4.2.1 Cut tuning

To safely remove noise from identified VO decays, the cuts are applied on VO decay parameters
and some TPC reconstruction parameters. The cuts are listed in Table 4.2. Cuts for A and anti-A
particles are asymmetric according to the charge of the daughter particle, otherwise the values of the
cuts are the same. Cuts for daughter particles of K% are similar because daughter particles are
always 7" and 7.

The cuts must be tuned in the way, that the background is minimized and as less as possible of
valid statistics is lost, so that signal to background ratio is as high as possible. Approach used to
tune the cuts was based on creating a 2D mass-fit parameter histogram which shows thin (in mass)
and long (in fit parameter) peak of identified VO particles and mass independent background. Such
histograms should be created with application of searched cuts, which values are widened from
expected value, so one can see background and peak evolution. Optimal cut is to be searched in
vicinity of point, where background falls to zero and peak starts to rise (Figure 4.3). In some cases
background falls to zero when peak has already reached maximum, in that case one must find
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4 TPC and identified particle cuts

optimal peak/background ratio (Figure 4.4).

Cut definition A Anti-A K'%
DCA-V0 maximum [cm] 0.6 0.6 0.6
DCA-Neg minimum [cm] 1.9 0.7 1.2
DCA-Pos minimum [cm] 0.7 1.9 1.2
DCA maximum [cm] 0.6 0.6 0.6
Decay length minimum [cm] 9 9 5
Neg hits in TPC minimum 15 20 15
Pos hits in TPC minimum 20 15 15

Table 4.2 The determined VO cut values. DCA cuts are the closest approaches of daughter or parent
particle to primary vertex or to each other. The scheme of the cuts is shown on Figure 4.2.

A DCA-Neg Pt1 h1MassDcaNegPt1 A DCA-Neg Pt1 h1MassDcaNegPt1

Entries 201289 Entries 201289
Mean x 1.133 Mean x 1.133
Mean y 4.875 Meany  4.875

RMS x  0.02949
RMS y 3.503

RMS x  0.02949
RMS y 3.503
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Figure 4.3 Histogram for used for optimization of A particle DCA-Neg cut in 1-3 GeV/c pr bin.
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Figure 4.4 Histogram used for optimization of A particle DCA-Pos cut in 1.0-1.5 GeV/c pr bin.
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4.2.2 V0 mass and mass cuts

Fine tuned VO cuts from section 4.2.1 were tested on Run VII dataset. Reconstruction of VO
particle mass and mass sigma dependence on pr was done. Pr bins of 0.5 GeV/c width were used,
starting at 1 GeV/c. The numbers of VO particles with pr larger than 4.5 GeV/c are insufficient to
produce reliable statistics, therefore bins up to 4.5 GeV/c are shown Figures 4.5 through 4.11. The
dataset was divided into two sets according to pseudorapidity (-1,0) and (0,1), which represents
TPC division into two halves (east and west) separated by high voltage membrane. No significant
difference was found in the two sets of data. Mass peaks and their fits are shown on Figures 4.9
through 4.14. Gaussian with linear function fit was used to obtain peak center and sigma Eq. (4.1).

(x—pl3]?

f=pl0]+pl1}x+p[¥]e "7 0
Lambda and K’ mass dependence on pr was fit by polynomial of second degree Eq. (4.2)
f=pl0]+p[1]x+p[2]5* (42)
and mass sigma pr dependence was fit by linear function Eq. (4.3).

f=pl]+p]x (43)

Fit results are available in Table 4.1.

particle p[0] pl1] p[2]
A 1.11e+00 + 6.12e-03 | 5.86¢-04 + 4.94¢-03 | -6.84¢-05 + 8.92¢-04
o(A) 1.41e-03 £9.01e-05 | 2.52e-04 +2.94e-05
K 4.93e-01 £2.47e-02 | 2.69¢-03+2.11e-02 | -3,77¢-04 + 4.14¢-03
o(K%) 5.48¢-03 +2.75e-04 | 4.30e-04 % 9.29¢-05

Table 4.3 The mass fit parameters for Eq. 4.2 and Eq. 4.3.

>

mass P; dependence |

‘ AandA and A mass P; ¢ dependence |
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1171 0.0024 ’
1116} H [N } 0.0022—
e ‘ 0.002—
1114 B
E 0.0018—
M3 e L . P I
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Figure 4.5 A and anti-A mass fit. Figure 4.6 A and anti-A mass o fit.
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KOS mass PT dependence ‘ KO0 mass PT (e} dependence |
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Figure 4.7 K% mass fit. Figure 4.8 K% mass o fit
4.3 Summary

Found cut parameters were used later for two particle correlations. Mass cut based on fit functions
was also used to remove further noise. The mass cut seems to be useful in removing noise ridge that
is visible on Figures 4.3 and 4.4. Mass cut with is + 3c.

Possibility of using Breit-Wigner fit for mass peaks should be examined in future.

21



4 TPC and identified particle cuts

[ hiambaaMazsEastFEPH ) T e EaiF P [ hiambdaMazsEasiFFFE | T e EaaiF P
Enares EHE Enares EF
= Mzan 1.427 = Mzan 1.425
100 [— ' NS 0.08763 E ' NS 0.02381
- Taan -
2000 [— 00 E_
C soon |-
S0 — E
- 4000
00 [ 100 -
C a0 -
2000 [ E
r 1000
b Bt o= Bt
[ hiambdaMiazsEasiFFE@ | T e EaaiF P [ hiambdaMazsEasiFFEE | T e EaiF P
Enares ZH080
E Mean 1125 e
2000 b A S 000 —
zs00 - ano [~
za00 [~ r
F €0 [—
1500 -
- 400 |—
1000 r
=0 o
k) 10z 104 108 108 1a 142 144 148 148 1.2 k) 10z 104 108 108 14 142 144 148 148 1.2
[ hiambdaMassEastFFPIE | TSR CaaTF PP [ hiambdaMassEastFFPE | [T
6T Encres G
= 1.126 7y = Mean 1.427
o 2.0223 E EME 2.02203
=0 nfE
0~ “E
o e
1m0 E
o -
00— uwE-
: nf-
S f— =]
r RL1=
b 2 4= . : E : E 2
[ hLambdaMassEasiFFPIT | H Y [ hLambdaMassEasiFFPIB | Tl W S K |
Encres
S Mean 11435
uf 2z LENED Q2656 |
= =
np i
15 -
1w h{
E C | 1 I 1 '| H m I H_LHJM
% 102 104 106 108 14 142 144 146 148 12 L ¥ PR ¥ RN NN ¥R K R PR K R K R R

Figure 4.9 A mass peaks for east (-1,0) TPC half. X axis mass in GeV/c’. Y axis # of hits. Pr
bins are as follows: 1 (1.0,1.5); 2 (1.5,2.0); 3 (2.0,2.5); 4 (2.5,3.0); 5 (3.0,3.5); 6 (3.5,4.0); 7
(4.0,4.5); 8 (4.5,5.0) [GeV].
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Figure 4.10 A mass peaks for west (0,1) TPC half. X axis mass in GeV/c’. Y axis # of hits. Pt
bins as in Figure 4.9.
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Figure 4.11 anti-A mass peaks for east (-1,0) TPC half. X axis mass in GeV/c’. Y axis # of
hits. Pr bins as in Figure 4.9.
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Figure 4.12 anti-A mass peaks for west (0,1) TPC half. X axis mass in GeV/c’. Y axis # of
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Figure 4.13 K’ mass peaks for east (-1,0) TPC half. X axis mass in GeV/c’. Y axis # of hits.
P bins as in Figure 4.9.
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4 TPC and identified particle cuts
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Figure 4.14 K’ mass peaks for west (0,1) TPC half. X axis mass in GeV/c’. Y axis # of hits.
Pr bins as in Figure 4.9.
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5 Two particle correlations

5 Two particle correlations

5.1 Introduction

Two particle correlations in pseudorapidity and azimuth is a way, how to trigger and point out
effects bound to jet production in high energy particle collisions . The method is based on finding a
high or mid pr particle that acts as a trigger and correlating spatial distribution of less energetic
particles within the event with respect to this trigger particle. Trigger high pr particle is likely to be
a result of a jet or hard parton scattering, thus it is likely, that the particle correlation will point out
effects corresponding to jets in hot and dense medium.

5.2 Method basics

When a trigger particle is selected, full azimuth and rapidity range (-1,1) is used to make use of the
BEMC and TPC coverage. Trigger particle is selected solely due to its pr or energy deposed in
BEMC. The trigger particle properties,  and ® are noted. All is done for each of centrality bins in
Table 5.1. Centrality is determined according to event multiplicity, which is defined as number of
primary charged tracks detected by the TPC within [n| <0.5 .

Associated particles are selected from the same event as the trigger particle. Associated particles
can be selected in multiple pr bins if the statistics is sufficient, or a single pr range can be defined.
Always one must take associated particles with pr lower then the one of the trigger particle to avoid
correlating trigger particle to itself. Properties of associated particle n and ® are recovered and An
and A® of trigger and associated particle is stored into histogram. Possible values of An are (-2,2)
and A® (-w, m). All possible combinations of trigger-particle association are examined within an
event. Therefore one particle can be associated to multiple trigger particles in case that event
contains more then one particle. Resulting An x A® histogram has a form of a shape (Figure 5.1)
long in A® and “A” shaped in An, let's call it the roof, with jet-like effects superimposed on the
roof. It is a good assumption that the jet-like effects should be, at least partially, visible already on
the roof shape. Multiple corrections will take place to extract the effects, but those should not be of
similar magnitude as the effect itself.

Centrality Bin # Multiplicity
lower limit

0-5% 1 520
5-10% 2 441
10-20% 3 319
20-30% 4 222
30-40% 5 150
40-50% 6 96
50-60% 7 57
60-70% 8 31
70-80% 9 14
80-100% 10

Table 5.1 Centrality bins vs multiplicity.
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5 Two particle correlations
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Figure 5.1 Example of the An x A® correlation function. Run IV Aut+Au data, pr"®

3-4 GeVle, 2 < pr™™ < pr"¢, centraliti 0-5%.

5.3 Correlations in dataset from run

v

When only TPC is used, both the trigger and associated particles must come from tracks
reconstructed by TPC. Charged particles were used in this work as triggers and associated particles
in aim to obtain sufficient statistics. Data from Run IV are suited to be processed in this way. A
sliding pr window for trigger particles was used. Cut applied on associated particles has a form of 2
GeV/e < pr™™™ < pr™¢, In this way one can study effects of dependence of jet-like effects on
trigger pr. Pr bins used are [GeV/c]: 3-4; 4-5; 5-6; 6-8; >8. Figure 5.2 shows trigger statistics and
Figure 5.3 shows reconstructed correlation pairs statistics for Run IV data. One can see that this
type of binning has sufficient statistics at least for first couple centrality bins, which can be summed
to increase the statistics. Centrality bin 1, pr™¢ 3-4 GeV/c An x A® histogram is shown on Figure
5.1. Note the small peaks along A® axis, which correspond to the 12 TPC sectors. Also note the
wide peak in full An around A® = 0, which is mostly composed of the ridge effect. The large peak in
the middle is the jet peak. 42 bins in A® and 40 bins in An are used for An A® histograms.
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5 Two particle correlations
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Figure 5.2 Run IV trigger count, 2GeV < p***°  Figure 5.3 Run IV pair count, 2 GeV< p*** <
<thrig- < thrig.

5.4 Correlations in dataset from run VI

5.4.1 TPC triggered data, charged particles

Run VII data are triggered for events, that contain trigger hits in BEMC and associated particles in
TPC. Even though that Run VII data are biased by this High Tower Trigger, it is interesting to apply
exactly same method as for the IV data and look for possible differences. Similar sliding windows
cut for trigger particles (Pr bins [GeV/c]: 3-4; 4-5; 5-6; 6-8; >8) and cut for associated particles 2
GeV/e < pr™* < pr¢. Figures 5.6 through 5.8 show statistics. Statistics for VII data is two orders
lower, one order for 1 < p™* < pq™e,

Figure 5.4 shows the the roof shape for the same cut and centrality setup as Figure 5.1. One can
observe significantly worse statistics, yet the ridge effect (the long peak in An at A® = 0) is still
noticeable. Figure 5.5 shoes the roof shape when 1 GeV/c < pr™* < pr"¢ cut applied. One may
clearly see the ridge effect same as the TPC sector peaks.
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5 Two particle correlations
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Figure 5.4 The roof shape in An x A® histogram, VII data TPC trigger 2 GeV/c <
pr < pr'"¢, centrality bin 1.
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Figure 5.5 The roof shape in An x A® histogram, VII data TPC trigger 1 GeV/c <
pr*™ < pr™¢, centrality bin 1.
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5 Two particle correlations
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Figure 5.6 Run VII TPC triggered data, trigger
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Figure 5.7 Run VII TPC triggered data, pair
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Figure 5.8 Run VII TPC triggered data, pair
count 1 GeV/c < pr™ < pre,
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5.4.2 BEMC triggered data, charged particles

BEMC information contained in the dataset is used to search for trigger particles, TPC information
is used to search for all charged particles available for correlation. BEMC information contains 1, ®
and energy (Er) information. The n x @ information has resolution of single towers, which means
0.05 in both coordinates. The n @ obtained is centered on tower center. If we presume, that most
trigger particles are pions, one may use trigger particle energy value as a value for pr cut. The same
analysis and similar cuts were applied on associated particles as in section 5.4.1. Since it is
assumed that all trigger particles are pions, one may easily use (2 GeV/c < pr™** < E"¢ and 1 GeV/
¢ < pr*** < E™), Figures 5.9 and 5.10 shows an example of roof shaped structures, as generated by
this type of two particle correlations. Note that the roof is not linear in An, but has a curved shape.
Curvature of the shape is dependent on trigger particle cuts, and is surprisingly resembling hit
distribution in BEMC shown on Figure 3.6. Figure 5.11 shows the profile evolution as the trigger
particle E cuts slide. When window of 5 GeV <E is chosen, the roof is linear again. Window 8 GeV
< E already shows increase close to An. Figures 5.12 through 5.14 show statistics.
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5 Two particle correlations
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Figure 5.9 The roof shape in An x A® histogram, VII data BEMC trigger 2 GeV/c <
pr* < pr™¢, centrality bin 1.
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Figure 5.10 The roof shape in An x A® histogram, VII data BEMC trigger 1 GeV/c <
pr* < pr'&, centrality bin 1.
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5 Two particle correlations
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Figure 5.11 The roof shape profile in An, Run VII data BEMC trigger 1 GeV/c < pr** < py"e,
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5 Two particle correlations
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Figure 5.14 Run VII BEMC triggered, pairs
count 1 GeV/e < pr™* < py™e.

5.4.3 BEMC triggered data, identified particles

The method is similar to previous, up to the point, that only identified A, anti-A and K that pass
cut criteria described in Chapter 4 are selected as associated particles. The yield of A, anti-A
particles is summed, the yield of K’ is shown in separate graphs. Figures 5.15 through 5.20 show
statistics strength. The roof shape deformation is observed similar to previous case. The statistics
gatehred for identified particles is two orders of magnitude lower then for all charged particles,
because their production rate is much lower as well as the reconstruction efficiency int the TPC,
which is 10~15% in comparison with hadron efficiency ~ 85%.
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Figure 5.15 Run VII BEMC triggered, triggers
count 2 GeV/c < pr*** < py™e.
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Figure 5.16 Run VII BEMC triggered, pairs
count 2 GeV/c < pr*™* < pr™¢ for A and anti-A .
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Figure 5.17 Run VII BEMC triggered, pairs
count 2 GeV/c < pr*=™ < pr"¢ for K.
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6 Mixed events

6 Mixed events

6.1 Introduction

The roof shapes generated by two particle correlations are mostly composed of background with
small superposed signal. The background would ideally have a shape of ideal roof in case of
uniform detector acceptance. One may see in previous chapter, that the shape may be deformed, as
in case of BEMC triggered data. Because of differences in acceptances and various detector effects,
the background has distinct shape deformations, which are also projected into searched signal and
must be removed.

6.2 Method basics

The aim of the method is to remove all other than physical correlations form the data sample. This
i1s done via randomly choosing trigger and associated particles through events. When choosing a
trigger and an associated particles randomly in such a way, the physical non-random effects do not
appear in the resulting roof shape. Detector effects are included.

Ideal approach to do the mixing method would be to keep list of all particles, that have been paired
and to create the mixed histogram out of this list. This would be feasible, but very demanding for
computational resources. Simple way of creating mixed histograms was used instead.

During the correlation histogram creation, n x ® histograms of trigger and associated particles are
also stored. Each An x A® histogram has its corresponding n x ® histograms of trigger and
associated particles. Each trigger particle that passes the cut criteria is included once only, not
caring if there are any associated particles found. Each associated particle that passes the cut criteria
1s included every time, the correlation pair is found. Single associated particle is therefore included
as many times, as it is associated to any trigger particle in the event. The n x ® histograms have
smoother binning in order to keep sufficient spatial resolution.

Mixing script choses a trigger particle randomly from the trigger particle histogram. The random
choice is weighted according to particle counts in 1} X ® bins. After, the associated particle is chosen
from the associated particle histogram, similarly weighted as in the trigger particle case. An x A®
of the particle is computed and filled into mixed events histogram. Every correlation histogram has
its own mixed events histogram. The random choice of mixed particles is carried out 10 times more,
then is the entries count of corresponding correlation histogram. Resulting mixed event An x A®
histogram has similar binning as the correlation histograms. An example of mixed histogram is
shown on Figure 6.1. When the histogram is projected on A®, we can clearly see the TPC sector
boundaries, Figure 6.2
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Figure 6.1 An example of a mixed events An x A® histogram. P1™¢ 3-4 GeV/c, pr**™
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6 Mixed events

6.2.1 Normalization of mixed histograms

Mixed event histograms will be used to divide the correlation histograms. Since we don't wan to
loose information from the raw data, the mixed events histograms must be normalized. Mixed
histogram projection to An is used. The projected 1D histogram has a “A” shape, that can be fit with
two linear functions in ranges (-2,0) and (0,2). Height of intersection point is computed and divided
by number of bins in A®. The computed number is used to normalize the mixed events histogram,
so the bin heights are in range (0,1). Figure 6.3 shows an example of fitting process, Figure 6.4
shows Figure 6.1 after normalization.
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Figure 6.3 An projection fit. Figure 6.4 Normalized mixed events.

To obtain histogram without roof shaped background, one must divide the correlation histogram
with the normalized mixed events histograms. The resulting division of histograms on Figure 5.1
and Figure 6.4 is shown on Figure 6.5. Figure 6.6 and Figure 6.7 show an example of normalized
and divided histograms for EMC triggered charged data.

Both resulting divided histograms contain oscillation in high An, which is caused by sensitivity of
normalization in high An region. Figure 6.5 also shows small gap on top of the jet peak (in An = 0,
A® = 0). This is caused by finite two-track resolution in TPC. The ridge structure is clearly visible.
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6 Mixed events
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Figure 6.5 Resulting division of Figures 5.1. and 6.4. Py"¢ 3-4 GeV/c, pr*** 2-3 GeV/c.
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Figure 6.5 Normalized histogram, EMC triggering. Figure 6.6 Divided histogram, EMC triggering.
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7 Elliptic flow

7 Elliptic flow

7.1 Introduction

Two colliding nuclei are unlikely to hit each other in head-on collision, so that their profiles in
beam direction would overlap. The impact parameter of the collision is reaching from 0 to double
the nucleus radius. Reactions with larger impact parameter also occur, but only with interacting
electromagnetic fields. Parameter that expresses the degree in which the two nuclei overlap is called
centrality.

In case of not completely central collision, the overlapping region of the two nuclei has an almond
shape. Asymmetric in x-y plane, if z is the coordinate of the beam. Considering that the collided
system behaves as a fluid, this spatial asymmetry is responsible for differences in pressure gradient.
Pressure gradient differences result into differences in pr distribution.

This mechanism is significant for lower pr background particles. Trigger particles with higher pr
are also subject to pr distribution modification, but the cause is rather the energy loss in initially
spatial asymmetric medium.

7.2 Method basics

The azimuthal distributions of product particles with respect to the reactio plane are commonly
described as a Fourier harmonics [18,19]

dN c B
CM—¢_A[1+ZO: 2VnCOSI’l((l) ([/)] (7.1)

where A¢p=¢—y , @ is an azimuth angle of a particle, y is an azimuth angle of reaction plane.
In our case, only the second term of the harmonics is considered, since it is the strongest and the
other terms do not play a significant role. Therefore in two-particle correlations:

d*N
dAD,

0 N .
=B 1+Z 2Vicos2(d)i—q§j) ; B:ﬁ (7.2)
0

where B is the background azimuthal density and v, = <v,"¢> <p,"%>
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7 Elliptic flow

Figure 7.1 Schematic view of a collision of two identical nuclei, in the plane
transverse to the beam direction (z-axis). The x- and y-axes are drawn as per the
standard convention. The dots indicate the positions of participant nucleons. Due to
fluctuations, the overlap zone could be shifted and tilted with respect to the (x, y)
frame. x' and y' are the principal axes of inertia of the dots. [23]

7.3 ZYAM method

The Zero Yield at Minimum method is a method that allows a simple, yet precise [21] derivation
of the B parameter. The method is based on an assumption, that in certain region of A® the data
contain an elliptic flow modulated background only without any superposed jet signal. If v,
parameters are fixed, parameter B can be varied to search for such a region in A®, where the elliptic
flow function touches the data.

7.3.1 Application

First of all, a bin with minimal value was found in the histogram. In order to avoid statistical
fluctuation, values of the two adjacent bins (one from left, one from right) were added to the
minimum value and an average (A) was computed. The searched B value was obtained to make the
flow function pass by the point defined by the center of minimum bin and the computed average
value, using Eq 7.3.

B= 4 (7.3)
1+2viv@eos(2A®)

As the v, measurement is complicated by presence of various non-flow effects (resonance decays,
jets) a commonly used values are based on averaging v, determined from the event plane method
and 4-particle cumulants. So the used v, parameters are fixed as a mean of v,{EP} [19] and v,{4}
[24]. Resulting example is shown on Figure 7.2
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7 Elliptic flow
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8 Tracking efficiency

8.1 Introduction

The detector track reconstruction efficiency is not constant, bud dependent mainly on pr,
pseudorapidity and azimuth. To successfully reproduce a physically accurate data, one must correct
for particles, that do not get registered in the detector, but that are believed that existed.

Tracks which do not pass through the active volume are lost completely from the reconstruction
chain but must be corrected for to produce accurate physics results for any measurement. Those that
penetrate an active detector volume may still not be correctly reconstructed and there are many
reasons why inefficiencies in reconstruction may occur. These include, but are not restricted to,
dead channels in the detector, space-charge distortions, merging of tracks, fake tracks and algorithm
inefficiencies [14].

To obtain the detection efficiency factor, simulated data are embedded into the real events. The set
including both, the real and the embedded data is passed the through the analysis chain. Volume of
reconstructed artificial data at the end of the chain is compared to volume of data inserted. The
ration of reconstructed/inserted data is the searched detection efficiency.

8.2 The method

A Monte-Carlo simulation of the STAR detector is used as a first step of the detection efficiency
corrections. The Monte-Carlo simulates particle interaction and energy loss of particles in the STAR
detector. Simulated particles are used as the input stack of the simulator. The GEANT program is
used to carry out the simulation and output particle trajectories and energy deposition in various
detector systems of the simulated STAR experiment. TPC particle information is extracted and
passed to a TPC simulation program, that mimics TPC response to passing particles. The output of
the TPC simulation program is a subset of artificial particles, which is then merged into real events
and passed to standard STAR analysis chain for reconstruction.

Once the analysis is finished, one start to move backwards and the reconstructed tracks are
associated with Monte-Carlo simulated track in the TPC. The Monte-Carlo tracks are tracked back
to their primary track, and thus the reconstructed track may be associated with the primary track.
For neutral primary particles, this is also dependent on reconstruction of both charged decay
daughter particles for each of the primary particles.

In this way a connection from artificial primary particle to user reconstructed particle was created
and thus one may examine the detection efficiency.

8.3 Application

Since at the time of writing this work, no Run VII simulation was available, only the Run IV TPC
triggered data detection efficiency correction was used for TPC triggered charged data. The
efficiency correction function has a form [25] :

e=pl*|+pl3](atan(p[1]+pl2] p;))+ pl4]xn*+ p[5]xn*+ p[6]xn° (8.2)

It is a function of pr, pseudorapidity and centrality. Each of the p[x] parameters is centrality
dependent according to centrality bin, there is 10 sets of parameters. The parameters were
determined by fit using Eq (8.2).
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9 The An x Ao correlation

9.1 Introduction

Energy loss of hard partons, as they traverse the bulk medium is distributed into particles in the
medium. Study of various changes in detected particle distribution allows us to investigate
properties of the medium in its early stages.

Increase in particle yield in An (called the ridge) was observed at near side. This increase is
reaching over |An| = 1.5 and is reported to be persistent up to pr = 9 GeV/c of triggering particle. In
this work, analysis of ridge structure was done for various combinations of trigger methods, particle
types and run data sets. Namely the Run IV and VII data were used (details in chapter 5).

9.2 Run IV data

The run IV data were used to search for ridge structure. Trigger particles were searched in TPC for
various pr ranges (3-4; 4-5; 5-6; 6-8; 8+; 5+). Centrality bins were defined as shown on Table 5.1.
Pr cut for associated particles was chosen 2 GeV/c < pr*™ < pr"", The procedure described in
chapter 5 was used and the embedding was used to correct for detection efficiency. Two adjacent
centrality bins were added to provide better statistics. This is not needed for best centralities and
low trigger pr, but the worse centralities and higher pr triggered data miss statistics.

Figures 9.1, 9.2 and 9.3 show ridge structures for different centrality bins and different trigger
particle pr cuts. One may notice, that the ratio of jet peak height to ridge height increases with
increasing centrality bin same as with increasing trigger particle pr cut, which will be discussed in
chapter 10.
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Figure 9.1 Ridge structure for different centrality bins, trigger 3-4 GeV/c, associated 2-3 GeV/c.
Run IV charged particles.
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Figure 9.2 Ridge structure for different centrality bins, trigger 5-6 GeV/c, associated 2-3 GeV/e.

Run IV charged particles.
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Figure 9.3 Ridge structure for different centrality bins, trigger > 8 GeV/c, associated 2-3 GeV/c.

Run IV charged particles.
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9.3 Run Vil data

Multiple methods were used to analyze run VII data. Triggering was done in both TPC and BEMC
and associated particles were chosen from all charged particles or identified VO particles A, anti-A
and K'%.

9.3.1 TPC triggered, charged particles

Exactly similar method to Run IV data was used to generate Figure 9.4. Figure 9.5 was generated
using different associated particles pr cut, to increase the statistics ( 1 GeV/c < pr™*° < pr"#" ). One
may notice, that lower statistics also generates a higher jet peak / ridge height ratio.
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Figure 9.4 Ridge structure for different centrality bins, trigger 3-4 GeV/c, associated 2-3 GeV/c,
Run VII charged particles.
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Figure 9.5 Ridge structure for different centrality bins, trigger 3-4 GeV/c, associated 1-3 GeV/c,
Run VII charged particles, 1 GeV/c < pr*® < pr'ieeer,

9.3.2 BEMC triggered, charged particles

BEMC was used as a trigger for the data. All charged particles are associated. One may notice that
the jet peak comes much cleaner then in TPC triggered data. The ridge shape is less obvious. Using

a lower (1 GeV/e < pr*™® < pr"® ) cut for associated particles shows a little improvement of
statistics.
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Figure 9.6 Ridge structure for different centrality bins, trigger 3-4 GeV/c, associated 2-3 GeV/c,
Run VII charged particles, BEMC triggered.
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Figure 9.7 Ridge structure for different centrality bins, trigger 3-4 GeV/c, associated 1-3 GeVe,

Run VII charged particles, BEMC triggered, 1 GeV/c < pr* < pr"ee,
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9.3.3 BEMC triggered, identified particles

The method is similar to previous, up to the point, that only identified A, anti-A and K that pass
cut criteria described in chapter 4 are selected as associated particles. Figures 9.7 and 9.8 show VO

particle yields.
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Run VII A and anti-A, BEMC triggered, 1 GeV/c < pr*** < pr"ee,

50

[ #hits, centrality bins 5 and 6 o

Emries 13803

Moan x 0001438
Meany  p057EY
FMSx 1825
CfRMSy 1

4 GeV/e, associated 1-3 GeV/e,



9 The An x AD correlation

[ # hits, centrality bins 1and 2 | e = [ # hits, centrality bins 3 and 4 | Ee = [ #hits, centrality bins 5and 6 | Ee =

Entrws 124880

Mean x -0 8¢17E8 Moanx 081376
Meany  0.04821
RMSy 1823
o My 1004

Meany 005012
o FMSx 1836
oSy oo

Figure 9.9 Ridge structure for different centrality bins, trigger 3-4 GeV/c, associated 1-3 GeV/e,
Run VII K’, BEMC triggered pr 1 cut.

9.4 Summary

It shows, that the VII data provide very limited statistics to analyze the ridge structure in any way.
Even though the data were prepared to use BEMC for triggering, the best result from VII data is
still given by TPC triggering. The ridge structure is barely visible in the data. Ridge yields, that
seem to diminish with higher trigger pr cuts are discussed in next chapter.
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10 Ridge yield

10.1 Introduction

Study of ridge particle yield per triggering particle is conducted. The study was done to
understand, why there is no ridge showing on Run VII data with high pr > 5 GeV/c BEMC
triggering and identified VO particles.

10.2 Method basics

The method is based on two assumptions: that the ridge yield over An is constant and that the jet
peak is not reaching over |[An| > 0.7. As seen on figures from previous chapter, this is a safe
assumption.

The An x A® histograms are divided into three sectors; |An| <0.7, 0.7 <An<1.4and -0.7 > An
> - 1.4. It is secured, that each of the outer sectors contains exactly same bin count in An as is 2 of
bit count of the inner sector. Projection of each sector is created, the the two outer sectors are added
and the result is subtracted from the inner sector projection.

The inner sector contains data composed mainly of three sources; the jet peak, the ridge and the
elliptic flow. The outer sectors do not include the jet peak data. Since when the two outer sectors are
subtracted from the inner one, one also subtracts the elliptic flow, assuming that the v, is flat in the
STAR n acceptance. The resulting histogram contains jet peak yield only, which is then normalized
to number of triggering particles.

If another sector of the same histogram is created and projected, |An| < 1.4, it contains all sources
of data, the jet peak, the ridge and the elliptic flow. The elliptic flow can be subtracted, as described
in chapter 7. Result is normalized to number of triggering particles, which gives us summed yield of
the jet peak and the ridge. One can now subtract the jet peak yield from the combined jet peak and
ridge yield and obtain the ridge yield normalized to number of triggering particles. The method
progress is shown on Figures 10.1 to 10.7.
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Figure 10.1 The ridge region 0.7 <An < 1.4
projection. P1"™¢ 3-4 GeV/c, pr*** 2-3 GeV/c,

centrality 0-10%.
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Figure 10.2 The ridge region -0.7 > An > -1.4
projection. Py"™¢ 3-4 GeV/c pr** 2-3 GeV/c,

centrality 0-10%.
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Figure 10.3 The common jet and ridge
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Figure 10.4 The jet peak yield, normalized to
the number of triggers. P1"™¢ 3-4 GeV/c,
pr¥* 2-3 GeV/e, centrality 0-10%.
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Figure 10.5 Full region -1.4 <An<1.4
projection. Cuts as in 10.3.

Figure 10.6 The elliptic flow subtraction of
normalized ridge and jet yield. Cuts as in 10.3.
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Figure 10.7 The resulting ridge yield normalized to number of triggering particles is
computed as a area of a gaussian peak close to region A® (-1,1). Cuts as in 10.3.
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10.3 Results

The method was applied on both the Run IV and the Run VII data. Results are shown on next
figures.

idge yield depend tri d centrali
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Figure 10.8 Ridge yield for run 04 data 2 GeV/c Figure 10.9 Ridge yield for run 04 data 2 GeV/c
< pTaSSOC < thl’lg. < pTaSSOC < thl’lg’ taken from [9] .

Analysis of Run IV data confirmed the previous findings of [9]. The steeper fall of centrality
0%-10% ridge yield presented on Figure 10.8 may be accounted for differences in elliptic flow
subtraction method.
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Figure 10.10 Ridge yield for run 07 data TPC Figure 10.11 Ridge yield for run 07 data BEMC
triggered GeV/c 2 < pr*** < p™=. triggered GeV/c 2 < pr*** < pr".

Even though the Run VII data were not primarily meant to be TPC triggered, the analysis shows
expected evolution. The ridge yield is lower for higher centralities.

The BEMC triggering has a specific in low trigger count in the two bins 4 GeV/c < pr"¢ < 5 GeV/
cand 5 GeV/c < pr"™¢ < 6 GeV/c, therefor the data in those two bins are presented with much larger
errors. In all data analyzed, the two bins always displayed higher yields.
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Figure 10.12 Ridge yield for run 07 data BEMC Figure 10.13 Ridge yield for run 07 data BEMC
triggered, A and anti-A 1 < p™ < p"&, triggered, K% 1 < pr™ < p,"e.

Selecting the VO particles A, anti-A and K’ cripples the statistics strength, as discussed in chapter
5. The data presented, when divided into bins by trigger particle energy, do not give enough
statistics and therefore are presented with large errors. This is a bad news for any further baryon /
meson ration study. One should also notice, that the ridge yield is very close to zero, mostly within
the error bars.

The baryon / meson ratios were reconstructed as a function of pr of associated particles. The
normalized ridge and jet yields were computed, using previously described process, in pr*** bins
with trigger particle cut 5 GeV/c < pr'¢. The yields were computed separate for A and K% particles,
for the jet peak and for the ridge. The resulting ratio of computed yields is shown on Figure 10.14.
The data are burdened with large errors, due to very limited statistics, as described in chapter 5. The
pr*®* bins chosen are as follows: 1 GeV/c < pr™** <2 GeV/c; 1 GeV/e <pr™* <3 GeV/c; 2 GeV/
c <pr*** <3 GeV/c; 3GeV/e <pr*™*<5GeV/c. The 1 GeV/ec <pr*** <3 GeV/c was included
due to high error level of bin 1 GeV/c <pr*™** <2 GeV/c .
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Figure 10.14 The A/K’ ratios for jet and ridge. Reconstruction done using A and K’
particles. Run VII data, BEMC triggered, STAR experiment. pr*** bins from left to

right: (1,2); (1,3); (2,3); (3,5).
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and ridgelike correlation peaks in Au+Au collisions together with this ratio
obtained from inclusive pr spectra in p+p collisions.
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11 Conclusion

The study of two particle correlations in pseudorapidity and azimuth was conducted on the STAR
Run VII data. The ridge structure extending in pseudorapidity was observed, the yields for the
ridge-like structures and the jet peaks were obtained. The baryon / meson ratios were computed for
10% most central collisions. The whole analysis is burdened with very low statistics of identified A,
anti-A and K’ particles. Even with large errors, the baryon / meson ratio may indicate that the ridge
particle composition is closer to the medium bulk, than is the jet peak composition, which
resembles the p+p collision ratios. This is in favor of the parton recombination model for the ridge,
which describes baryon and meson production as a combinations of partons, where the combination
of three less energetic partons constituting a baryon with certain energy is more likely than
combination of two more energetic partons that would constitute a meson with the similar energy.

To understand the low statistics strength, a study of different triggering and particle selection
schemes was conducted. Accuracy of the analysis method was additionally tested on Run IV data.
This shows agreement with previously published data.
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