

First-order event plane correlated directed and triangular flow from fixed-target energies at RHIC-STAR

Sharang Rav Sharma (for the STAR collaboration)

Indian Institute of Science Education and Research (IISER) Tirupati

2nd WORKSHOP ON DYNAMICS OF QCD MATTER

National Institute of Science Education and Research, Bhubaneswar

Supported in part by the

07 - 09 October 2023

Outline

- Motivation
- STAR Detector
- Analysis Technique
- Results and Discussion
 - \diamond Directed Flow (v_1)
 - \bullet Triangular Flow (v_3)
- Summary

Anisotropic Flow

- ☐ Flow is the measure of azimuthal anisotropy
- ☐ Azimuthal distribution of particles

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{2}N}{2\pi p_{T}dp_{T}dy}(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \Psi_{n})))$$

- ☐ Sensitive to the equation of state
- ☐ Sensitive to early times in the evolution of the system

Directed flow

$$v_1 = \langle \cos(\phi - \Psi_1) \rangle$$

 $v_1 \rightarrow$ sideward motion of emitted hadrons with respect to collision reaction plane

Triangular flow

$$v_3 = \langle \cos 3(\phi - \Psi_1) \rangle$$

 $v_3 \rightarrow$ driven by the shape of the initial collision geometry for lower collision energies

CMS, Phys. Rev. C 87 014902 (2013)

R. Snellings New J. Phys. 13 055008 (2011), 2309.12610 [nucl-ex]

Motivation

A. Aprahamian et. al. DOE/NSF (NSAC) Report, (2015)

/vb/_{0.1} QMD Cascade (b=5-9 fm) **V**3 -0.05 no other published measurements! -0.1 10^{-1} E_{beam}/A (GeV)

J. Phys. G: Nucl. Part. Phys. 45 085101 (2018) Phys. Rev. Lett. 125, 262301 (2020) 2309.12610 [nucl-ex]

- ☐ The primary aim of relativistic heavy-ion collisions → Understand the properties and the evolution of strongly interacting matter, Quark—Gluon Plasma (QGP)
- Minimum in baryons' dv_1/dy predicted to be sensitive to softening of EoS \rightarrow Signature of a 1st-order phase transition between hadronic matter and QGP
- Contrary to observations at higher energy v_3 is correlated to first order reaction plane at 2.4 GeV (HADES) and 3 GeV (STAR)

STAR Experiment

- Fixed-Target (FXT) program at Solenoidal Tracker At RHIC (STAR) → low center-of-mass energies and high baryon density region
- **BES-II FXT mode**: Au+Au collisions at $\sqrt{s_{NN}} = 3$, **3.2**, **3.5**, **3.9**, 4.5, 5.2, 6.2, 7.2, and 7.7 GeV.

Particle Identification

https://www.star.bnl.gov/

- Two main detectors are used for particle identification in **STAR**
 - Time Projection Chamber (TPC)

$$z_X = \ln\left(\frac{\langle dE/dx\rangle}{\langle dE/dx\rangle_X^B}\right)$$

$$m^2 = p^2 \left(\frac{c^2 T^2}{L^2} - 1 \right)$$

Event Plane Reconstruction

- → Event Plane Detector (EPD) → Measures charged particles emitted in the forward and backward directions
- TPC and EPD are divided into 2 and 4 regions ,respectively, based on their pseudorapidity (η) coverage

$$\vec{Q} = (Q_x, Q_y) = \left(\sum_i w_i \cos(\phi_i), \sum_i w_i \sin(\phi_i)\right)$$
$$\psi_1 = \tan^{-1}(Q_y/Q_x)$$

where ϕ_i is azimuthal angle and w_i is the weight for the ith hits, Ψ_1 is the first-order event plane angle

Event Plane Resolution

• In FXT mode collision, 3-sub event method was used to determine the EPD first order event plane resolution.

$$\begin{split} &\langle \cos[n(\Psi_m^a - \Psi_r)] \rangle \\ &= \sqrt{\frac{\langle \cos[n(\Psi_m^a - \Psi_m^b)] \rangle \langle \cos[n(\Psi_m^a - \Psi_m^c)] \rangle}{\langle \cos[n(\Psi_m^b - \Psi_m^c)] \rangle}}. \end{split}$$

$$a → EPD-AB (-5.3 < η < 3.3)$$
 $b → EPD-C (-3.3 < η < 2.9)$
 $c → TPC B (-1.0 < η < 0)$

Phase Space Distribution

- Rapidity: $y_{cms} = y + |y_{mid}|$, for FXT 3.2 GeV, $y_{|mid|} = -1.127$
- \rightarrow p_T region:
 - **\pi:** 0.2< p_T <1.6, **K:** 0.4< p_T <1.6, **p:** 0.4< p_T <2 (GeV/c)
 - **d:** $0.8 < p_T < 3.5$, **t:** $1.2 < p_T < 4$ (GeV/c)

Directed Flow (v₁) Results

Rapidity dependence of $v_1(\pi^+, K^+, p)$

- Magnitude of v₁ increases with increasing rapidity
- Magnitude of v_1 increases with increasing mass of the particle $(p > K^+ > \pi^+)$

Centrality dependence of $v_{1}(\pi^{+})$

- v₁ changes sign moving from central to peripheral collision
- v_1 slope is maximum for peripheral collision

Centrality dependence of v₁ (K⁺)

- v₁ has weak centrality dependence for kaon
- v_1 slope is maximum for mid-central collision

Centrality dependence of v₁ (p)

14

 v_1 slope is maximum for mid-central collision

Collision energy dependence of v_1 slope (π, K, p)

- $v_1(y)$ fitted with a 3rd order polynomial to extract the slope parameter $(b = dv_1/dy)$ $v_1(y) = by + cy^3$
- Fitting range \rightarrow [y: -1, 0]
- Increasing collision energy \rightarrow decreasing v_1 slope

dv₁/dy for collider energies was extracted using first-order polynomial fit

Phys. Rev. Lett. 120, 062301 (2018), Phys.Lett.B 827, 137003 (2022)

Rapidity dependence of v₁ (net p and net K)

Collision energy dependence of v₁ slope (net p and net K)

• $v_1(y)$ fitted with a 3rd order polynomial to extract the slope parameter $(b = dv_1/dy)$

$$v_1(y) = by + cy^3$$

- Fitting range \rightarrow [y: -1, 0]
- Increasing collision energy → decreasing v₁
 slope

dv₁/dy for published data was extracted using first-order polynomial fit

Phys. Rev. Lett. 120, 062301 (2018)

Rapidity dependence of light nuclei v₁

- Magnitude of v₁ increases with increasing rapidity
- Magnitude of v₁ increases with increasing mass of the particle

Collision energy dependence of light nuclei v₁ slope

- $v_1(y)$ fitted with a 3rd order polynomial to extract the slope parameter $(b = dv_1/dy)$ $v_1(y) = by + cy^3$
- Fitting range \rightarrow [y: -1, 0]
- Increasing collision energy \rightarrow decreasing v_1 slope

dv₁/dy for published data was extracted using first-order polynomial fit

Phys. Rev. Lett. 120, 062301 (2018)

Triangular Flow (v₃) Results

Rapidity dependence of v₂

Magnitude of proton v₃ increases with increasing rapidity

Collision energy dependence of v₂ slope

HADES \rightarrow p (20-30 %): 0.6 < p_T < 0.9 GeV/c

- $v_3(y)$ fitted with a 3rd order polynomial to extract the slope parameter $(b = dv_3/dy)$ • $v_3(y) = by + cy^3$
- Fitting range \rightarrow [y: -1, 0]
- Increasing collision energy → decreasing magnitude of v₃ slope

(HADES) Phys. Rev. Lett. 125, 262301 (2020)

Rapidity dependence of v₃

Weak rapidity dependence of v₃ observed for deuteron compared to proton

Collision energy dependence of v₂ slope

HADES \rightarrow p (20-30 %): 0.6 < p_T < 0.9 GeV/c

- $v_3(y)$ fitted with a 3rd order polynomial to extract the slope parameter $(b = dv_3/dy)$ $v_3(y) = by + cy^3$
- Fitting range \rightarrow [y: -1, 0]
- Increasing collision energy → decreasing magnitude of v₃ slope

(HADES) Phys. Rev. Lett. 125, 262301 (2020)

Summary

- The rapidity, centrality, and collision energy dependence of directed flow (v_1) and triangular flow (v_3) of identified hadrons, net particle, and light nuclei for Au+Au collisions at 3.2, 3.5, and 3.9 GeV are presented.
- \square Magnitude of v_1 and v_3 increases with increasing rapidity
- Slope of v_1 (dv_1/dy) decreases with increasing collision energy for all particles and light nuclei
- \Box Approximate mass no. scaling for light nuclei is observed v_1
- dv_1/dy for both net-kaon and net-proton shows a non monotonic behaviour moving from high to low collision energies
- Magnitude of v_3 slope (dv_3/dy) decreases with increasing collision energy for pion, proton and deuteron

Thank you for your attention!

Backup slides

EPD groups

EPD TPC inner outer η gap

-5.3 -4.05 -3.3 -2.9 -2.6 -2.0 -1.1 -1.0 0 η

EPD has 16 rings, there are 24 sectors in each ring, while there are 12 sectors in the innermost ring, totally one side EPD has 372 sectors

EPD group	Pseudorapidity	Ring
Α	-5.3, -4.05	1-4
В	-4.05, -3.3	5-8
С	-3.3, -2.9	9-12
D	-2.9, -2.6	13-16

Resolution comparison 3.2, 3.5, 3.9 GeV

