

Longitudinal spin transfer of Lambda and anti-Lambda in pp collisions at STAR

Qinghua Xu (Shandong Uni.) *for the STAR collaboration* Dubna Spin workshop, September 4, 2009

- Introduction
- Longitudinal spin transfer of hyperons in pp at STAR
- Summary & outlook

RHIC- the first polarized pp collider in the world

pp Run Year	2002	2003	2004	2005	2006	2008	2009(200/500)
< Polarization> %	15	30	40-45	45-50	60	45	55 / <mark>35</mark> *
L _{max} [10 ³⁰ s ⁻¹ cm ⁻²]	2	6	6	16	30	35	40 / <mark>85</mark> *
L _{int} [pb ⁻¹] at STAR (Long./Transverse)	0 / 0.3	0.3 / 0.25	0.4 / 0	3.1 / 0.1	8.5 / 3.4	0 /3.1	22 /10.5*

*first 500 GeV run

Spin structure of nucleon

• Spin sum rule (longitudinal case):

• Polarized parton densities:

$$\Delta q(x) = q^+(x) - q^-(x)$$

$$q(x) = q^+(x) + q^-(x)$$

From the recent global analysis

--fit all the available data in DIS, SDIS and pp

$\Delta \mathbf{S}$ from polarized DIS

• Inclusive DIS:

-- with neutron, hyperon β decay data using SU(3)_f symmetry,

$$\Rightarrow \Delta \Sigma = 0.33 \pm 0.03 \pm 0.03$$

$$\begin{cases} \Delta U \sim 0.84, \\ \Delta D \sim -0.43, \\ \Delta S \sim -0.08 \end{cases} \quad [\Delta q = \int_0^1 \Delta q(x) dx]$$

• Semi-inclusive DIS:

-COMPASS also did similar analysis

Measurements in other channels/reactions are needed!

Hyperon production in pp at RHIC

• The factorized framework enables perturbative description,

$$d\sigma \propto \int f_a(x_1) \cdot f_b(x_2) \otimes d\hat{\sigma} \otimes D^{\Lambda}(z)$$

• Data from RHIC on $\Lambda(\overline{\Lambda})$

- STAR data on $\Lambda + \overline{\Lambda}$ described by pQCD with suitable choice of D^{Λ}.

Study ΔS at RHIC with hyperons?

• Hyperons contain at least one strange (valence) quark, and thus are expected to carry information of strangeness polarization in nucleon.

u quark should dominate Lambda's production, how about anti-Lambda?

- s-bar frag. dominates anti-Lambda's production at high p_T!
- decay contribution is smaller!
- Longitudinal spin transfer in pp:

$$D_{LL} = \frac{\sigma_{p^+ p \to \overline{\Lambda}^+ X} - \sigma_{p^+ p \to \overline{\Lambda}^- X}}{\sigma_{p^+ p \to \overline{\Lambda}^+ X} + \sigma_{p^+ p \to \overline{\Lambda}^- X}} = P_{\overline{\Lambda}}$$

 \Rightarrow How sensitive will anti-Lambda D_{LL} be to $\Delta \overline{s}$?

D_{LL}-Longitudinal spin transfer at RHIC

• Expectations at LO show sensitivity of D_{LL} for anti-Lambda to $\Delta \overline{s}$:

- Λ D_{LL} is less sensitive to $\Delta s,$ due to large u,d quark fragmentation.
- Promising measurements---effects potentially large enough to be observed.

STAR - Solenoid Tracker At RHIC

for |η|<~1.3

STAR data - 2005

~3X10⁶ events collected with a beam-collision trigger (minimum bias, bandwidth limited),

Extraction of spin transfer D_{LL}

• Λ polarization is usually extracted from the momentum distribution of its weak decay ($\Lambda \rightarrow p\pi^{-}$):

 $dN = \frac{N_{tot}}{2} A(\cos\theta^*) (1 + \alpha P_{\Lambda} \cos\theta^*)$

 $\mathbf{cos}\boldsymbol{\theta^*} \propto \vec{P}_{\mathbf{\Lambda}} \cdot \vec{p}_p^*$

```
α: decay parameter: 0.642A(cosθ*): detector acceptance
```

 $N_{\Lambda}^{-} = N^{-+} \frac{L_{--}}{L_{-+}} + N^{--}$

 D_{LL} can thus be extracted from Λ counts with opposite beam polarization within a small interval of $\cos\theta^*$:

$$D_{LL} = \frac{1}{\alpha \cdot P_{beam} < \cos\theta^* >} \cdot \frac{N^+ - N^-}{N^+ - N^-} , \text{ where the acceptance cancels.}$$
$$N_{\Lambda}^+ = N^{++} \frac{L_{--}}{L_{++}} + N^{+-} \frac{L_{--}}{L_{+-}}$$

Relative luminosity ratio measured with BBC, and P_b in RHIC.

Signal and Background

Cross-check of D_{LL}

• The extracted D_{LL} exhibits the expected statistical variation with time:

• Null measurements with spin-0 K_{0s} (larger statistics than $\Lambda)$

Results I

• First D_{LL} results from RHIC:

- Statistics and p_T limited,
- Need better precision and higher p_T .

STAR triggered data - 2005

STAR was triggered on energy deposits in jet-patches of the Barrel E.M. Calorimeter,

Trigger on high p_T jets --> higher p_T hyperons in jets

Recorded a (biased) sample of Λ and $\overline{\Lambda}$ candidates with considerably higher p_T , although not directly triggered.

Results II

Systematic uncertainties:

- 5% scale uncertainty from RHIC beam polarization measurement.
- 2% from decay-parameter (0.642±0.013).
- 2% from non-longitudinal beam polarization components at STAR.
- <0.01 from relative luminosity measurement.</p>
- <5% background fraction.
- <4% pile-up effects in TPC.
- <15% trigger bias estimated from MC simulation.

Summary

- The production of $\Lambda + \overline{\Lambda}$ at RHIC is well described with pQCD.
- Expectations for $\overline{\Lambda}$ spin transfer measurements at RHIC, show sensitivity to $\underline{\Lambda s}$ at high p_T .
- The first proof-of-principle measurement has been performed, with a minimum bias trigger, and extended the p_T coverage with a jet trigger.

Outlook I - Transverse spin transfer

• Transverse spin transfer of hyperons to study transverse spin structure of nucleon:

$$P_T^H = \frac{d\boldsymbol{\sigma}^{(p_{\uparrow}p \to H_{\uparrow}X)} - d\boldsymbol{\sigma}^{(p_{\uparrow}p \to H_{\downarrow}X)}}{d\boldsymbol{\sigma}^{(p_{\uparrow}p \to H_{\uparrow}X)} + d\boldsymbol{\sigma}^{(p_{\uparrow}p \to H_{\downarrow}X)}}$$

• Transverse polarization direction in the hard scattering:

How to measure transfer spin transfer ?

- Possible measurements on transverse spin transfer:
 - D_{TT}: final state polarization along the pol. of outgoing hard quark (considering the rotation in scattering plane)--- jet correlation
 - ♣ D_{NN}, spin transfer w.r.t. production plane:

D_{NN}: production plane close to hard scattering plane;

but precision reduced ~ one half (beam pol. projected to N.)

Outlook II - forward hyperon physics

• A proposal of FHC at STAR may enable the study of forward Lambda physics together with FMS through $\Lambda \rightarrow n\pi^0$ (x_F~0.4).

