14. Zimányi

Winter School on Heavy Ion Physics

December 1-5, 2014

Budapest, Hungary

D meson measurements at STAR

Pavol Federič for the STAR collaboration NPI ASCR

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Motivation

Topics

- properties of the Quark-Gluon Plasma (QGP) at RHIC
- interactions of heavy quarks with QCD matter

Heavy quarks (c, b)

- produced in initial hard processes (due to large masses)
- probe the strongly interacting QGP
- modified spectrum: mechanism of energy loss
- collective flow: sensitive to dynamics, thermalization

The STAR detector

VPD: minimum bias trigger

TPC: particle identification via dE/dx, tracking

TOF: particle identification

BEMC: high p_{τ} trigger

Measurement of charm quarks

Indirect measurements through semileptonic decay + easy to trigger (hight p_{τ} electrons) + higher branching ratio - no direct access to parent hadron kinematics - contribution from both charm and bottom hadron decays **Direct open charm reconstruction** + direct access to parent hadron kinematics - smaller branching ratio 800 - large combinatorial background (without π^+ 3,80% vertex detector) π^+

 D_0

D*+

 π^+

Particle identification

- TPC better than TOF for kaon/pion seperation with momentum above ~2.5 GeV/c
- TOF provides clean sample of kaons with momentum up to ~1.6 GeV/c

D^o reconstruction in Au+Au

Phys. Rev. Lett. 113, 142301 (2014)

 K^{-}

 D^0

 π^+

D* reconstruction in p+p

Production cross section in p+p

- Levy fit describes data well
- new p+p 500 GeV measurement
 - consistent with FONLL

FONLL: Fixed Order plus Next-to-Leading Logarithms calculation, $\mu_{\rm F}$ = $\mu_{\rm R}$ = $m_{\rm c},~$ |y| < 1, arXiv: 1210.4610

D^o production in 200 GeV Au+Au

Charm is mostly produced in initial hard processes

D^o suppression in 200 GeV Au+Au

- p+p baseline from Levy fit to Run 09 data
- strong suppression in central collisions at $p_{T} > 2GeV/c$

similar suppression to pions

/ enhancement at 1 < p_{τ} < 2 GeV/c

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN/dy^{AuAu}}{dN/dy^{PP}}$$

 $R_{AA} = 1$ indicates no modification of the production in the medium.

D^o suppression in 200 GeV Au+Au

- p+p baseline from Levy fit to Run 09 data
- strong suppression in central collisions at p_T > 2GeV/c

similar suppression to pions

• enhancement at $1 < p_T < 2 \text{ GeV/c}$

Understanding from models:

- The enhancement is consistent with models that include charm–light quark coalescence
- The suppression is consistent with strong charmmedium interaction
- Cold Nuclear Matter effects
 might be important

D^o in 193 GeV U+U

U+U collisions reach ~20% higher Bjorken energy density than Au+Au: Phys. Rev. C 84 054907

D^o in 193 GeV U+U

U+U collisions reach ~20% higher Bjorken energy density than Au+Au: Phys. Rev. C 84 054907

- Increasing suppression for $p_T > 3 \text{ GeV/c}$ with N_{part}
- Trend in Au+Au continued in U+U

Heavy Flavor Tracker (HFT)

- Precision measurement of heavy quark production
- Reconstruction of secondary vertices (separate charm and bottom)
- Run14 was taken with HFT fully operational

Summary

- Charm quark production cross-section in p+p collisions is consistent with pQCD predictions
- Total D⁰ cross-section follows N_{bin} scaling confirming that charm is mostly produced in initial hard processes
- D^o enhancement in central Au+Au collisions around 1.5 GeV/c suggests production via charm_light quark coalescence
- Strong suppression of D⁰ production above 3 GeV/c in central Au+Au collisions indicates strong charm-medium interaction
- U+U measurements show similar suppression pattern to Au+Au

Backup

Models for R_{AA}

	TAMU	SUBTECH	Torino	Duke	LANL
HQ prod.	LO	FNOLL	NLO	LO	LO
QGP-Hydro.	ideal	ideal	viscous	viscous	ideal
HQ eLoss	coll	coll. +rad.	coll. +rad.	coll. +rad.	diss.+rad.
Coalescence	Yes	Yes	No	Yes	No
Cronin effect	Yes	Yes	No	No	Yes
Shadowing	No	No	Yes	Yes/No	Yes

Understanding from models:

- The enhancement is consistent with models that include charm–light quark coalescence
- The suppression is consistent with strong charmmedium interaction
- Cold Nuclear Matter effects
 might be important

