

Light Nuclei Production in Heavy-ion Collisions in STAR at RHIC BES Energies

Sabita Das

(for the STAR collaboration) Central China Normal University, China

15th Dec. 2016Sabita DasXXII DAE-BRNS High Energy Physics Symposium, 12-16 Dec. 2016

- Introduction and Motivation
- Experimental setup STAR
- Particle identification method
- ✤ Transverse momentum spectra
- ♦ Results: energy and centrality dependence of dN/dy, $< p_T >$, B_3
- ✤ Summary

Motivation

Light nuclei - expected to form at a later stage of the evolution - a probe for understanding the final freeze-out

Mechanism of formation: direct production or coalescence of nucleons

> The nuclear invariant yield is related to invariant yield of baryon as

$$E_A \frac{d^3 N_A}{d^3 p_A} = B_A \left(E_p \frac{d^3 N_p}{d^3 p_p} \right)^Z \left(E_n \frac{d^3 N_n}{d^3 p_n} \right)^{A-Z}$$

 $B_{\rm A}$ is coalescente parameter and related to the freeze-out (source) volume $B_{\rm A} \propto 1/V_{\rm f}$ A-1

Study of light nuclei provides information about freeze-out properties, such as particle density and source volume.

H. H. Gutbrod et al., Phys. Rev. Lett. 37, 667 (1976).

Motivation for B_A

Coalescence parameters B_2 and B_3 , can be derived from p, d, and ³He spectra

$$E_A \frac{d^3 N_A}{d^3 p_A} = B_A \left(E_p \frac{d^3 N_p}{d^3 p_p} \right)^2 \left(E_n \frac{d^3 N_n}{d^3 p_n} \right)^{A-Z} \qquad \mathbf{B_2} \propto \sqrt{\mathbf{B_3}}$$

Measurement of B_A in BES energies will help to understand the particle production mechanism via coalescence.

The Solenoidal Tracker At RHIC (STAR)

Particle Identification

	MB	Types	Values
(GeV)	events	V _z	< 40/50 cm
39	~ 112 M	V _r	< 2 cm
		р _т	> .2 GeV/c
27	~ 38 M	y	< 0.5
10.0	10 14	ŋ	< 1.0
19.6	~ 19 M	DCA	<= 1.0 cm
11.5	~ 10 M	nHitsfit ratio	>= .52
7.7	~ 3 M	nFitPoints	>= 20
		nHitsdEdx	>= 10

Correction Factors

- Tracking efficiency and acceptance correction
- Momentum correction

STAR Transverse Momentum Particle Spectra (³He)

dN/dy

dN/dy increases with decrease of collision energy

dN/dy shows an exponential decrease with increase of mass of the particle. Similar behavior also observed in lower and higher collision energies.

J. Barrette et al., Phys. Rev. C 50,1077–1084 (1994), R. Arsenescu et al., New J. Phys. 5 (2003) 150. H. Agakishiev et al., Nature 473 (2011) 353, J. Adam et al. (ALICE Collaboration) Phys. Rev. C 93, 024917

$B_3 vs p_T/A$

Errors are statistical

▷ B_3 increases with p_T/A and also from central to peripheral as $B_A \propto 1/V_f^{A-1}$, V_f = freeze-out volume

Small B₃ values in central collisions imply freeze-out volume at thermal freeze-out is larger than for peripheral collisions

$B_A vs VS_{NN}$

B_A found to be decreasing with increase of collision energies which corresponds to an increase in freeze-out volume

Summary

- ✓ New results on ³He production have been presented in Au+Au collisions at $\sqrt{s_{NN}} = 39, 27, 19.6, 11.5$ and 7.7 GeV.
- ✓ Centrality and energy dependence of particle yields, $<p_T>$ and B_3 are presented.
- ✓ Comparison of B_2 and B_3 vs. energy.
- With decreases of collision energies dN/dy increases
- As the collision energy increases, the values of <p_T> increase and the extracted B₃ decrease => collective expansion in the Au+Au collisions

Back up