

Measurement of J/ψ polarization in Ru+Ru and

Zr+Zr collisions at $\sqrt{S_{NN}}$ = 200 GeV at STAR

Dandan Shen (shendandan@mail.sdu.edu.cn), for the STAR Collaboration

Shandong University

J/\psi serves as an important probe to study the properties of the quark-gluon plasma (QGP) created in heavy-ion collisions. The polarization is the most fundamental property of particles and is driven by the production mechanism and might be influenced by the QGP. The production mechanism of J/ψ includes direct, feed-down and regeneration. In Ru+Ru and Zr+Zr collisions at $\sqrt{S_{NN}} = 200 \text{ GeV}$, it has been observed that the J/ψ yield is strongly suppressed and its elliptic flow (v_2) is consistent with zero, indicating J/ψ 's strong coupling with the medium and its potentially small regeneration contribution. Besides those measurements, the J/ψ polarization can shed new light on the QGP properties and the J/ψ production mechanism in heavy-ion collisions. In this poster, we will present the first measurement of J/ψ polarization in heavy-ion collisions at RHIC. The J/ψ polarization in the Helicity frame and Collins-Soper frame, in Ru+Ru and Zr+Zr collisions at $\sqrt{S_{NN}}$ = 200 GeV will be presented.

Motivation and Introduction

- Studying the J/ψ polarization in heavy-ion collisions can provide new insight into the interaction between J/ψ and the QGP^[1]
 - QGP can potentially alter the J/ψ polarization
 - · Modifications to the feed-down structure in the QGP
- J/ψ polarization can be extracted via the angular distribution of the decayed positron^[2], which can be expressed as:

 $W(\cos\theta, \phi) \propto 1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\phi} \sin^2 \theta \cos 2\phi + \lambda_{\theta \phi} \sin 2\theta \cos \phi$

Different definitions of the z-axis

• I/ψ polarization with respect to the production plane

Frame	Helicity frame (HX)	Collins-Soper frame (CS)
z-axis	direction along the J/ψ momentum in the center-of-mass frame of the colliding beams	bisector of the angle formed by one beam direction and the opposite direction of the other beam in J/ψ rest frame

· Frame invariant quantity

$$\lambda_{inv} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 - \lambda_{th}}$$

Any arbitrary choice of the experimental observation frame should yield the same value of λ_{inv}

Good cross-check on measurements performed in different frames

STAR Experiment

Large acceptance: $|\eta| < 1, -\pi < \phi < \pi$

Tracking - momentum, pathlength Particle identification - dE/dx

Particle identification – $1/\beta$

· BEMC:

Electron identification – E_0/p

References

- [1]. B. L. Ioffe and D. E. Kharzeev, Phys. Rev. C 68, 061902(R) (2003)
- [2]. P. Faccioli et al. Eur. Phys. J. C 69, 657 (2010)

Analysis Procedure

- **Signal extraction**: extract raw J/ψ yields in different $\cos\theta$ and ϕ bins by fitting dielectron invariant mass distribution
- Acceptance \times efficiency correction: calculate $A \times \epsilon$ using detector simulation and apply it to raw yield
 - Iterative procedure: tuning of J/ψ polarization in simulation according to data
- Polarization parameters extraction: simultaneously fit the corrected yield distributions as a function of $cos\theta$ and ϕ to extract λ_{θ} , λ_{ϕ}

Figure 1: Invariant mass distributions of dielectron pairs within $0.2 < p_T < 10$. GeV/c

Figure 2: An example of extracting λ_{θ} and λ_{ϕ} at the last iteration

Results and Conclusions

- First measurement of J/ψ polarization in heavy-ion collisions at RHIC
 - Ru+Ru & Zr+Zr collisions at $\sqrt{S_{NN}} = 200 \text{ GeV}$
 - J/ψ : 0.2 < p_T < 10. GeV/c, |y| < 1
- J/ψ polarization vs p_T :
 - λ_{θ} , λ_{ϕ} consistent with zero in HX and CS frames and no obvious p_T dependence
 - Hint of a non-trivial p_T dependence in the HX frame
- J/ψ polarization vs centrality:
 - No significant dependence of λ_{θ} , λ_{ϕ} on centrality
- λ_{inv} as a function of p_T and centrality are consistent between HX and CS frames and their values are zero, within uncertainty.
- Outlook: measurement of I/ψ spin alignment with respect to TPC event-plane coming soon

