Measurement of J/ψ polarization in Ru+Ru and ## Zr+Zr collisions at $\sqrt{S_{NN}}$ = 200 GeV at STAR Dandan Shen (shendandan@mail.sdu.edu.cn), for the STAR Collaboration ## **Shandong University** J/\psi serves as an important probe to study the properties of the quark-gluon plasma (QGP) created in heavy-ion collisions. The polarization is the most fundamental property of particles and is driven by the production mechanism and might be influenced by the QGP. The production mechanism of J/ψ includes direct, feed-down and regeneration. In Ru+Ru and Zr+Zr collisions at $\sqrt{S_{NN}} = 200 \text{ GeV}$, it has been observed that the J/ψ yield is strongly suppressed and its elliptic flow (v_2) is consistent with zero, indicating J/ψ 's strong coupling with the medium and its potentially small regeneration contribution. Besides those measurements, the J/ψ polarization can shed new light on the QGP properties and the J/ψ production mechanism in heavy-ion collisions. In this poster, we will present the first measurement of J/ψ polarization in heavy-ion collisions at RHIC. The J/ψ polarization in the Helicity frame and Collins-Soper frame, in Ru+Ru and Zr+Zr collisions at $\sqrt{S_{NN}}$ = 200 GeV will be presented. #### Motivation and Introduction - Studying the J/ψ polarization in heavy-ion collisions can provide new insight into the interaction between J/ψ and the QGP^[1] - QGP can potentially alter the J/ψ polarization - · Modifications to the feed-down structure in the QGP - J/ψ polarization can be extracted via the angular distribution of the decayed positron^[2], which can be expressed as: $W(\cos\theta, \phi) \propto 1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\phi} \sin^2 \theta \cos 2\phi + \lambda_{\theta \phi} \sin 2\theta \cos \phi$ #### Different definitions of the z-axis • I/ψ polarization with respect to the production plane | Frame | Helicity frame (HX) | Collins-Soper frame (CS) | |--------|--|--| | z-axis | direction along the J/ψ momentum in the center-of-mass frame of the colliding beams | bisector of the angle formed by one beam direction and the opposite direction of the other beam in J/ψ rest frame | · Frame invariant quantity $$\lambda_{inv} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 - \lambda_{th}}$$ Any arbitrary choice of the experimental observation frame should yield the same value of λ_{inv} Good cross-check on measurements performed in different frames ## **STAR Experiment** Large acceptance: $|\eta| < 1, -\pi < \phi < \pi$ Tracking - momentum, pathlength Particle identification - dE/dx Particle identification – $1/\beta$ · BEMC: Electron identification – E_0/p ### References - [1]. B. L. Ioffe and D. E. Kharzeev, Phys. Rev. C 68, 061902(R) (2003) - [2]. P. Faccioli et al. Eur. Phys. J. C 69, 657 (2010) ## **Analysis Procedure** - **Signal extraction**: extract raw J/ψ yields in different $\cos\theta$ and ϕ bins by fitting dielectron invariant mass distribution - Acceptance \times efficiency correction: calculate $A \times \epsilon$ using detector simulation and apply it to raw yield - Iterative procedure: tuning of J/ψ polarization in simulation according to data - Polarization parameters extraction: simultaneously fit the corrected yield distributions as a function of $cos\theta$ and ϕ to extract λ_{θ} , λ_{ϕ} Figure 1: Invariant mass distributions of dielectron pairs within $0.2 < p_T < 10$. GeV/c Figure 2: An example of extracting λ_{θ} and λ_{ϕ} at the last iteration ### **Results and Conclusions** - First measurement of J/ψ polarization in heavy-ion collisions at RHIC - Ru+Ru & Zr+Zr collisions at $\sqrt{S_{NN}} = 200 \text{ GeV}$ - J/ψ : 0.2 < p_T < 10. GeV/c, |y| < 1 - J/ψ polarization vs p_T : - λ_{θ} , λ_{ϕ} consistent with zero in HX and CS frames and no obvious p_T dependence - Hint of a non-trivial p_T dependence in the HX frame - J/ψ polarization vs centrality: - No significant dependence of λ_{θ} , λ_{ϕ} on centrality - λ_{inv} as a function of p_T and centrality are consistent between HX and CS frames and their values are zero, within uncertainty. - Outlook: measurement of I/ψ spin alignment with respect to TPC event-plane coming soon