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Naive picture of proton properties determined largely
by three valence quarks = replaced by a highly complex,
non-perturbative system in which properties “emerge”
from the interactions of quarks, anti-quarks, and gluons

Decomposition not unique! For helicity distributions
(collinear terms) most useful to use ‘canonical’ approach

(S,”) =Y = % AT + AG + (L,% + (L,9)
R. L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990)

Precise DIS measurements have shown quark spins contribute only ~30% (AZ term),
but are sensitive to gluons only through scaling violations over limited (x,Q?) space
- need a (colored) probe that couples directly to gluons!
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“soft” parton
distribution
functions

~

m h

Hadronic beams provide polarized QCD
probes of spin-dependent partonic structure!
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Allows us to ask:
Does the gluon spin contribute

significantly to that of the proton?

What about sea quarks?

Or partonic OAM?
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Facilities: RHIC & STAR at BNL

Absolute Polarimeter (HT jet) RHIC pC Polarimeters
\ .

Spin Rotators
(longitudinal polarization)

Pol. H™ Source Solenoid Partial Siberian Snake (longitudinal polarization)

LINAC Helical Partial Siberian Snake

i

AGS Internal Polarimeter

BOOSTER

200 MeV Polarimeter — - .
/ AGS pC Polarimeters

Solenoidal Tracker
At RHIC

' Yellow

RHIC: provides collisions of transversely or longitudinally
polarized protons at energies up to v/s = 510 GeV

STAR: allows for charged-particle track reconstruction for
Inl< 1.3, and measures EM particle energies for -1< n <2,
both over the full azimuthal range of 21

Rf Dipoﬁ' Strong Helical AGS Snake
Year and Vs STAR L [pb]
Longitudinal runs

Vs =200 GeV
2009 25 .
2015 52

Vs = 500/510 GeV
2009 10 .
2011 12
2012 82
2013 300
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/ AGS pC Polarimeters

Solenoidal Tracker
At RHIC

' Yellow

Rf Dipoﬁ' Strong Helical AGS Snake
Year and Vs STAR L [pb]
Longitudinal runs
Vs = 200 GeV
2009 25 : — —
[ PR = ]4 S RHIC:. provides collisions qf transversely or longitudinally
Js = 500/510 GeV Final STAR rized protons at energies up to /s = 510 GeV
2009 10 longitudinal R: allows for charged-particle track reconstruction for
2011 12 data sets! (1.3 and measures EM particle energies for -1< 1 <2,
both over the full azimuthal range of 21

2012 82
2013 300
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Jets: a robust proxy for scattered partons

Jet Levels MC Jets Three Simulation Levels:
Jet direction * Parton level — hard-scattered partons from
a 2—2 hard scattering event from Pythia

Particle level — partons propagate, then
fragment and hadronize into stable,
color-neutral particles

N
|II I
|
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GEANT

* Detector level — simulate STAR’s response
to produced particles (towers and tracks),
“embed” response in real zero-bias data

<«
7T, P el > E Anti-k; Algorithm:
R * Radius = 0.5 or 0.6
f * Less sensitive to underlying event
{ q, g and pile-up effects
* Used in both data and simulation

3‘.‘«1{:4—0
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Jet spin asymmetries: probe Ag(x) directly

With longitudinally polarized beams, compare jet yields O'O?§STAR 2009
for colliding protons with same versus opposite helicities 0055~ p*p — Jet+X
005F-  1s=200 GeV
What we measure What we hope to learn! 0.04E -7
7\ 7\ F003E- et | 1
ory —04—  LAf®AfL ®barr 0%
ALL = = > » 0.01F
0-—|_—|_ —|_ 0-+_ ﬂbfa’g fb ®¢0- ® UE:Q_‘:F-‘:L!-:“_;T;T;T: ““““““““““ S
What others What is 00T | T
gg and gg dominant at measure calculable 007 | STAR PRL 115, 092002 (2015)
i ! =3 DSSV
BI;LI_C energies - gluons! 008 | e, /
2 [ .99 qag 0.05 |--- LSS10
£osp b - 2009 —first large data set 0.04E- | R Pt
g b | at Vs = 200 GeV, showing E 003E f,-—-’/
- —jet+X iti -
'§. 0.3 ::T.OI(?:TEQSM pOSItlve A_’-L 9 sugg-ests 0.02
@ r Anti-k_ R=0.6 Ag(x) > 0 in the regions 0.01E-
02/~ L of (x,Q2) probed, roughly AT T
005<x<02, @106V | o ey
i Dotted: {s=500 GeV TE
0508 07 0t 02 025 03 045 04 045 05 5 '1||:|' 4539 35 30 35

Jetx. (=2p./Vs)
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2009 results: large impact on global analyses!
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NNPDF, Nucl. Phys. B 887, 276 (2014)
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Probing Ag(x): how low can you go?
DSSV, PRL 113, 012001 (2014)

>

| # NEW FIT

90% C.L. regioné

DSSV#* :
90% C.L. region

DSSV

05 F Q*=10GeV?

Though DSSV group finds substantial gluon
polarization, with small uncertainties, for
x > 0.05, region below this is wide open —
note change of scales on two axes!

STAR'’s strategy for exploring low-x regime:
» Increase size / integ’d L of data sets

» Focus on dijets, rather than inclusive jets

» Reconstruct jets at the highest possible n

» Take data at the highest possible energy

-0.2

-0.1 -0

Ultimately, carry out all of these
improvements simultaneously!
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o Correlation measurements, such as dijets,
capture more information from the hard
scattering and provide a more direct link to
the initial kinematics than inclusive probes

o Dijets sample initial-state partonic x values
over a more limited range than inclusive jets
—> constraints on functional form of Ag(x,Q?)

o Leading order expressions at left show how
different jet topologies (combinations of the
two jet n ranges) are sensitive to different
initial-state partonic momentum fractions
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First STAR dijet results at /s = 200 GeV

PRD 95, 071103 (2017)

— [ Di-Jet A,

— DSSV 2014

—~ === NNPDF Pol 1.1
[_1 Scale Uncertainty
(&3] PDF Uncertainty
[ Rel. Lumi. Uncertainty

Mid-rapidity dijet A,, results presented for
two topologies as a function of the dijet
invariant mass corrected to parton level

_I|III§III|III|III|

Data are compared to expectations from

Siantny = Sign(r,) DSSV14 and NNPDFpol1.1 polarized PDFs,

STAR 2009
p+p— Jet + Jet + X
Vs = 200 GeV

Sign(n) * Sign(n) both of which include the 2009 inclusive
jet results yet show significant differences
Scale and PDF uncertainty bands shown
for NNPDFpoll.1 calculation

I|III§II|III|III|III|I

+ 6.5% scale uncertainty
from polarization not shown

30 40 50
Di-jet Invariant Mass

R Dijet cross section also measured
[GeV/c?]
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Recent results: mldrapldlty dijets at 200 GeV

PRD 103, 091103 (2021)

<010~ STAR, Vs = 200 GeV
ik, 705 Final longitudinal data set acquired by STAR
ool | (2015) at 200 GeV - 52 pb-1, 2x 2009 data

Results for midrapidity inclusive jet and dijet
asymmetries are seen to be consistent with
those found in 2009, though with statistical

0.00—

(primarily Underlying Event subtraction) to

<M sign(n) = sign(n,) T errors ~1.5 times smaller
| O STAR 2015, This work
| A STAR 2009, PRD 95 (2017) 071103
| - DSSV14 . = . .
0.05|— % NNPDFpol 1.1 2015 data have additional corrections applied

ol sl RS o )| jet p;, as well as greatly reduced systematic
e e o ! uncertainties.

uncertainty from polarization not shown

1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I
0.05 0.10 0.15 0.20 0.25 0.30 0.35

Parton Dijet M. /{s

ny
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Detecting jets at more forward rapidities

2—2 scattering kinematics:

0.5

0.4

N3 + Na = In(x1/x2) e

- Shows that jet pairs found
at higher pseudorapidities
originate from collisions of
partons with asymmetric
momentum fractions 10
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—> Jet pairs reconstructed in
the STAR Endcap region,
e.g., will be dominated by
high-x (and thus highly
polarized) valence quarks
interacting with the low-x
gluons of primary interest
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Normalized Yield

STAR dijets at forward rapidities (200 GeV)
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. Phys. Rev. D 98, 32011 (2018)

& pijet A | STAR 2009
e DSSV 2014 p+p— Jet + Jet + X
—— NNPDF Pol 1.1 s = 200 GeV

-0.8 < n, < 0;08 < n, < 1.8

[] Scale Uncertainty
[ ] PDF Uncertainty
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+ 6.5% scale uncertainty from polarization not shown
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Dijet A,, values shown for two
Barrel-Endcap (East and West)
and Endcap-Endcap topologies

With one jet in Endcap, can see

increased x; / x, asymmetry as
second jet moves forward in n

Results are again compared to
DSSV14 and NNPDFpoll.1
expectations = with limited
statistics, no clear preference,
but data tend to exceed global
fits with increased asymmetry
in colliding parton x values

14



On to v/s = 510 GeV: Midrapidity inclusive jets

Accepted in PRD, arXiv:2110.11020

Why go to higher energy? Recall:

X1 = l(pT e3 + Pr en4)
_\/E 3 4

=> For jets detected at same p;
and n, higher /s probes lower x

Plotted vs x;, overall consistency
seen among STAR data sets, with
data generally above fits, with a
slight preference for DSSV14

Results from 510 GeV push down

to lower x;, though predicted A,

very small in this region

10.06
< - STAR p+p— Jet+ X
L 0.05— {s = 200 GeV:
@ -« 2009, PRL 115 092002 (2015) & |
D 004 = 2015, PRD 103 L091103 (2021) P
S B
O - ¥s =510 GeV: J
£ o3+ 2012, PRD 100 052005 (2019) ::
T % 2013, this work X :
- __ DSSV14 oS seee X
- L7 LRSS
0.02: 22 NNPDFpol1.1 + -t .2.'9;‘%:@3.:{:.:,0.0 &
- K SCTERIRKRK S
0.01 kARSI
o i+ SO } ------------ R CT TR B
_0 O : 1 | 1 1 | 1 1 1 1 I 1 1 | 1 I | 1 1 | I 1 | 1 1 | 1 1 1 1 | 1 1 |
0% 0.05 0.1 0.15 0.2 0.25 0.3
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On to Vs = 510 GeV: Midrapidity dijets

0.08— STAR 2013 @ 510GeV 0.08 -
[ p+p—> Jet + Jet + X [
— Topelogy A Antik  R=0.5 - Topeology C
0.06 [ Forward - Forward ~~~ W ~~ ! 0.06 —  Central-Central ~-"fk---- ’
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- =
0.02— 0.02—
of—-- ey el A R [P M o
N [ u
—0.02 —0.02—
N - —
=) 1
2 o008 0.06 —
D : A 2012, PRD 100 052005 (2019) :
= Topelogy B Y& 2013, this work B Topelogy D
0.06—  Forward - Central — _DssVi4 s 004 Forward - Backward ¢
0.04 :_ %X NNPDFpolt .1 0.02 :_ I e
0.02— R, & SPWETER S5 s sl SO f _______________ -
L : F s
O —0.02|
002 0 20 40 80~ 80 100 ~ 120
- I T T T Parton Dijet M (GeV/c?)
0 20 40 60 80 100 120 ; .
Parton Dijet M (GeV/c?) Accepted in PRD, arXiv:2110.11020
Ny
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“Ultimate” data set: forward dijets at 510 GeV

0.06 0.06

~ [=] Dijet AL STAR Preliminary I Dijet A  (Anti-k R =0.5) STAR Preliminary
005 ... DSSV 2014 p+p— Jet + Jet + X . . . . L S DSSV 2014 p+p—> Jet + Jet + X
0.04=— —— NNPDF Pol 1.1 /S = 510 GeV Final |Ong|tUd|na| data aCQUII’Ed 0.04F— —— NNPDF Pol 1.1 2013 {s = 510 GeV
- -08<m,<0;08<n <18 E 08< ,<0;09<m, <18
005~ by STAR (2012, 2013) at 500 GeV, o=
0.02— 0.02—
= ~ -1, =
oo l{ Lo } 250 pb* integrated lum. o
0= . O
e [ “Pushes all the buttons” to reach o |
-o02= 2012 prelim., lowest possible gluon x values: 002 | 2013 prelim.
nosE. [ Scale Uncertainty large n, highest Vs, using dijets I T —
0045_ EPDF Uncertainty 004; PDFUncertainty
Loz A Rel. Lumi. Uncertainty X - - e T Rel. Lumi. Uncertainty
D0SE D<n 085082 <18 Preliminary results for 2012 (left) . .0 Gavo.r <ve
< ooz and 2013 (right) are in excellent oo
5 o= agreement with each other, both & *
0F . . . 0=
o0t favoring A, values slightly higher
70-02;— than gIObaI fit EXpECtationS. —0-02§ + 6.4% scale uncertainty from polarization not shown
0055 05 n <18 | All systematic uncertainties for 005
ol the two data sets are finalized, so  *F
0.02- a combined result (including 0.02
001 their correlated uncertainties) 001
0= . 0F
oot can be published very soon. oot
—0-02§ + 6.6% scale uncertainty from polarization not shown —0-02;—
003y a0 e ‘80 100 120 00T a0 60 80 00 120 140 17
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Summary and Outlook

** For almost two decades, STAR has carried out precise
measurements of Iongltudlnal double-spin asymmetries 1
for inclusive and dijet production in pp collisions

4

1)

)

* By studying A,, over a wide range of kinematic regimes
and at several energies, increasingly tight constraints
have been placed on the gluon helicity distribution,
Ag(x), when results are included in global analyses by, »V ¢
e.g., the DSSV, NNPDF, and JAM groups

1)

* Midrapidity results indicate ~40% of the proton’s spin
may be due to contributions from the spins of gluons
that each carry at least 5% of the proton’s momentum

)

4

1)

» New, higher statistics data at more forward rapidities
and at higher collision energies have been recently or
are soon to be published, which will provide much
needed constraints in the low-x region.
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Technical challenges for jets in the STAR EEMC

| pythia + Geant|
[ Jet Pt Ratio Distribution | hist_jet2_PtRatio
= 1 0 : : : : . 3 Entries 117250
- i i ; ; ; : . T e o ey Mean x 1.125
S R R TR i Charged particle Meses 3148
0.9 ' : i } RMS x  0.2561
: : 5 RMSy 0.2926 P

tracking efficiency
falls off rapidly
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| Jet Pt Ratio Distribution | hist_jet2_PtRatio_MLP

true Entries 117250
Tue Oct 26 15:54:58 2010 n 3 Mean x 1.125

Mean y 0.999
‘ ! N ‘ " ; RMS x 0.2561
S PO E— - — L RMS y 0.2073 P

N
)

Must correct reconstructed jet properties on
an event-by-event basis for biases in p;,n, R;

N

Particle/Corrected Pt

ki
3]

—> Highly non-linear and correlated effects!

-

— Use machine learning (Multilayer Perceptron)

o
o
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