

Beam energy dependence of d and \overline{d} production in Au + Au collisions at RHIC

Ning Yu Central China Normal University for the STAR Collaboration

Outline

☆ Introduction

☆ STAR Experiment

★ Results and Discussions

☆ Summary

QCD Phase Diagram

- ☆ High baryon density:
 - ✓ Critical point and phase boundary
 - ✓ Possible new phase structure : quarkyonic matter

Light Nuclei Formation in HI Collisions

* Light (anti)nuclei with small binding energy (ϵ), such as d and \bar{d} with binding energy $\epsilon = 2.2$ MeV, are formed via final-state coalescence

$$E_{A}\frac{d^{3}N_{A}}{d^{3}p_{A}} = B_{A}\left(E_{p}\frac{d^{3}N_{p}}{d^{3}p_{p}}\right)^{Z}\left(E_{n}\frac{d^{3}N_{n}}{d^{3}p_{n}}\right)^{A-Z} \approx B_{A}\left(E_{p}\frac{d^{3}N_{p}}{d^{3}p_{p}}\right)^{A}, \ p_{A} = Ap_{p}$$

* In thermodynamics, B_A is related to the nucleon freeze-out correlation volume V_f or baryon density

$$B_A \propto V_f^{1-A}$$
, $B_2 = \frac{6\pi^3 R_{np} m_d}{m_p^2 V_f}$, $R_{np} = \frac{N_n}{N_p}$

* Light nuclei may serve as probes of space-momentum density and correlation of nucleons at freeze-out. We will focus on $d(\bar{d})$ in this talk.

László P. Csernai, Joseph I. Kapusta Phys. Reps, 131,223(1986) B. Monreal, *et. al.* PRC60,031901(1999), PRC60,051902(1999)

Energy Dependence of *B*_{*A*}

PHENIX, PRL. 94, 122302 (2005).

- * The size of the fireball increase from low to high collision energy, B_2 decrease with energy
- ★ The behavior of B_2 is different at high energy

- ★ Is there any structure in the energy dependence of B_2 , from high energy to low energy ?
- ★ Is there any centrality dependence of B_2 ?
- ★ Is there any difference of B_2

between deuteron and anti-

deuteron?

RHIC Beam Energy Scan

- ★ BES-I Au+Au collisions at $\sqrt{s_{NN}} = 7.7$, 11.5, 14.5, 19.6, 27, 39 and 62.4 GeV
 - Search for conjectured QCD critical point
 - ✓ Search for the first order phase transition
 - ✓ Search for the onset of key QGP signatures

STAR Collaboration, arXiv:1007.2613

$\sqrt{s_{\rm NN}}$ (GeV)	7.7	11.5	14.5	19.6	27	39	62.4	200
N _{eve} (M)	4	11	27	40	71	133	67	480
μ_B (MeV)	420	315	260	205	155	115	72	20

J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton PRC 73,034905 (2006)

Solenoidal Tracker At RHIC

Time Projection Chamber (**TPC**)

- ✓ Charged Particle Tracking
- ✓ Momentum reconstruction
- Particle identification from ionization energy loss (dE/dx)
- ✓ Pseudorapidity coverage $|\eta| < 1.0$

Time Of Flight (TOF)

- ✓ Particle identification m²
- ✓ Pseudorapidity coverage $|\eta| < 0.9$

Particle Identification

$$z_d = \log\left(\frac{\langle dE/dx \rangle}{\langle dE/dx \rangle_d^{BB}}\right)$$

BB : Bethe-Bloch H. Bichsel, Nucl. Instrum. Meth. A 562, 154 (2006).

 $m^2 = p^2 \left(\frac{c^2 t^2}{L^2} - 1\right)$

2017/2/7 17:10-17:30

Efficiency and Acceptance

2017/2/7 17:10-17:30

Corrections

★ Energy Loss

$$f(p_T) = A + B\left(1 + \frac{C}{p_T^2}\right)^D$$

2017/2/7 17:10-17:30

* Background in *d* analysis

- No centrality dependence of energy loss
- Energy loss of d and \overline{d} are the same
- The energy loss for all the collision energy are the same except 14.5 GeV (different material budget)

Deuteron Spectra

- * Mid-rapidity ($|y| \le 0.3$) transverse momentum distribution of *d* from Au+Au Collision
- \star Dash line: blast-wave function fits

$$\frac{\mathrm{d}^2 N}{m_T \mathrm{d} m_T} \propto \int_0^R r \mathrm{d} r m_T I_0 \left(\frac{p_T \mathrm{sinh}\rho}{T}\right) K_1 \left(\frac{m_T \mathrm{cosh}\rho}{T}\right)$$

2017/2/7 17:10-17:30

Anti-Deuteron Spectra

- ★ Mid-rapidity (|y| ≤ 0.3) transverse
 momentum distribution of \overline{d} from
 Au+Au Collision
- ★ Dash line: blast-wave function fits

$$\frac{\mathrm{d}^2 N}{m_T \mathrm{d} m_T} \propto \int_0^R r \mathrm{d} r m_T I_0 \left(\frac{p_T \mathrm{sinh}\rho}{T}\right) K_1 \left(\frac{m_T \mathrm{cosh}\rho}{T}\right)$$

2017/2/7 17:10-17:30

$\langle p_T \rangle$ and T_{kin} , β

	Tut			Turt			
39 GeV	d			$ar{d}$	π, Κ, p *		
Cent.	$T_{kin}({\rm MeV})$	β (c)	$\langle p_T \rangle$ (GeV/c)	$\langle p_T \rangle$ (GeV/c)	$T_{kin}(MeV)$	β (c)	$\langle p_T \rangle$ (GeV/c)
0-10%	99±12	0.45±0.02	1.35±0.09	1.39±0.09	118±11	0.48±0.04	0.85±0.05
10-20%	110±14	0.43±0.02	1.32±0.09	1.35±0.05	120±11	0.46±0.03	0.83±0.05
20-40%	135±23	0.39 ± 0.02	1.23±0.08	1.23±0.08	126±11	0.41±0.03	0.79±0.05

* STAR Collaboration, arXiv:1701.07065 (submitted to PRC)

2017/2/7 17:10-17:30

Integral Yield dN/dy

 $\star dN(d)/dy$ is smaller at higher energy: baryon stopping

- $\star dN(\overline{d})/dy$ increases with increasing energy: baryon pair production
- * N_{part} scaled dN/dy for \overline{d} show weak centrality dependence, for d increase slightly from peripheral to central collision

Antiparticle to Particle Ratios

* $N(\bar{d})/N(d)$ ratio decreases as a function of collision centrality * $N(\bar{d})/N(d)$ ratio decreases with decreasing energy

N(d)/N(p) Ratio vs. Energy

- The N(d)/N(p) ratios by thermal model prediction are consistent with the data from SIS energies up to LHC
- * A temperature of $T = 163 \pm 5$ MeV can be extracted from N(d)/N(p)and $N(\bar{d})/N(\bar{p})$

$$\frac{N(d)}{N(p)} \sim \frac{K_2(m_d/T)}{K_2(m_p/T)} e^{\frac{\mu_B}{T}}$$
$$\frac{N(\bar{d})}{N(\bar{p})} \sim \frac{K_2(m_d/T)}{K_2(m_p/T)} e^{-\frac{\mu_B}{T}}$$

The lines are from thermal model prediction A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, PLB697 (2011)203

2017/2/7 17:10-17:30

d/p^2 and $\overline{d}/\overline{p}^2$ Ratios

★ In thermal model with GCE (grand canonical ensemble), d/p^2 and \bar{d}/\bar{p}^2 should be the same if iso-spin effect can be neglected

$$\frac{\mu_Q}{T} = \frac{1}{2} \ln \left(\frac{\bar{d}/\bar{p}^2}{d/p^2} \right)$$

* The μ_Q/T can also be obtained by

$$\frac{\mu_Q}{T} = \frac{1}{2} \ln \left(\frac{\pi^+}{\pi^-} \right)$$

The results are close to zero implying small iso-spin effect

NA49, PRC 94, 044906 (2016)

B_2 v.s. m_T and Collision Centrality

$$B_2 = a \cdot \exp[b(m_T - m)]$$

NA44, EPJ C. 23, 237 (2002)

- ★ The values of B_2 increase as a function of m_T and decrease with collision centrality : collective expansion
- $\star B_2(\overline{d})$ are smaller than that of $B_2(d)$, anti-baryon freeze out at a larger source

Coalescence Parameters v.s. Collision Energy

★ B_2 decrease with collision energy. A minimum around $\sqrt{s_{NN}} = 20$ GeV : change of EOS?!

★ $B_2(\overline{d})$ values are systematically lower than that of $B_2(d)$ implying emitted source of anti-baryons is larger than those of baryons

Discussion

☆ Is there any structure in energy

dependence of B_2 , from high

energy to low energy ? (BES: Yes)

- ★ Is there any centrality dependence of B_2 ? (Yes)
- ★ Is there any difference of B_2 between deuteron and antideuteron? (Yes)

Summary

- ★ STAR systematic results of $d(\bar{d})$ production $(dN/dy, \langle p_T \rangle)$ from Au + Au collisions at $\sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4$ and 200 GeV
- ★ Coalescence parameter B_2 for d and \overline{d} are extracted. $B_2(d)$ and $B_2(\overline{d})$ are found to be different in the most central collisions
- Similar to the π HBT and net-proton high moment, around $\sqrt{s_{NN}} = 20$ GeV, B_2 reaches a minimum implying EOS changes around the energy
- ★ High statistics data are needed for future studies, especially at the high net-baryon density, i.e., low collision energy region

2017/2/7 17:10-17:30