

Differential measurements of Lambda polarization in Au+Au collisions and a search for the magnetic field by STAR

Joseph Adams, on behalf of the STAR collaboration

Quark Matter 2019 — Wuhan, China

6 November 2019

This work supported in part by U.S. DEPARTMENT OF ENERGY

Global hadron polarization P_H: a *new* agreement with the hydro paradigm

• Large $|\vec{B}|$ essential for measuring $C\mathcal{P}$ -violation observables like CME ⁽¹⁾

¹ D. E. Kharzeev, et. al., Nucl. Phys. A 803, 227 (2008)

- Large $|\vec{B}|$ essential for measuring $C\mathcal{P}$ -violation observables like CME ⁽¹⁾
- Late-stage $\left| \vec{B} \right|$ is gauge for $\sigma_{\rm QGP}$ ⁽²⁾

² L. McLerran and V. Skokov, Nucl. Phys. A 929, 184 (2014)

- Large $|\vec{B}|$ essential for measuring $C\mathcal{P}$ -violation observables like CME ⁽¹⁾
- Late-stage $\left| \overrightarrow{B} \right|$ is gauge for $\sigma_{\rm QGP}$ ⁽²⁾
- Previous $P_{\rm H}$ study shows magnetic field strengths consistent with zero $^{\rm (3)}$
 - but $|\vec{B}| > 0$ for BES-I energies is enticing

¹ D. E. Kharzeev, et. al., Nucl. Phys. A 803, 227 (2008)

² L. McLerran and V. Skokov, Nucl. Phys. A 929, 184 (2014)

³ STAR, Nature 548 (2017) 62548

- Large $|\vec{B}|$ essential for measuring $C\mathcal{P}$ -violation observables like CME ⁽¹⁾
- Late-stage $\left| \vec{B} \right|$ is gauge for $\sigma_{\rm QGP}$ ⁽²⁾
- Previous P_H study shows magnetic field strengths consistent with zero $^{(3)}$
 - but $|\vec{B}| > 0$ for BES-I energies is enticing
 - Such a $|\vec{B}|$ would be the largest measured

² L. McLerran and V. Skokov, Nucl. Phys. A 929, 184 (2014)

³ STAR, Nature 548 (2017) 62548

- Large $|\overline{B}|$ essential for measuring $C\mathcal{P}$ violation observables like CME⁽¹⁾
- Late-stage $|\overline{B}|$ is gauge for $\sigma_{\rm OGP}$ ⁽²⁾
- Previous P_H study shows magnetic field strengths consistent with zero ⁽³⁾
 - but $|\vec{B}| > 0$ for BES-I energies is enticing
 - Such a $|\overline{B}|$ would be the largest measured
- Now we have data from a dedicated run to search for a magnetic field
 - A high-statistics data set at 27 GeV

- Large $|\vec{B}|$ essential for measuring $C\mathcal{P}$ -violation observables like CME ⁽¹⁾
- Late-stage $\left| \vec{B} \right|$ is gauge for $\sigma_{\rm QGP}$ ⁽²⁾
- Previous $P_{\rm H}$ study shows magnetic field strengths consistent with zero $^{\rm (3)}$
 - but $|\vec{B}| > 0$ for BES-I energies is enticing
 - Such a $|\vec{B}|$ would be the largest measured
- Now we have data from a dedicated run to search for a magnetic field
 - A high-statistics data set at 27 GeV

- Differential measurements of P_H test model predictions
 - STAR recently published a high-statistics $P_{\!H}$ study at 200 GeV
 - We compare differential measurements using 27 and 54 GeV

¹ D. E. Kharzeev, et. al., Nucl. Phys. A 803, 227 (2008)

² L. McLerran and V. Skokov, Nucl. Phys. A 929, 184 (2014)

6 November 2019

Joseph Adams – Quark Matter 2019 – Wuhan, China

Magnetic field observable

- Vorticity gives positive contribution to P_{Λ} and $P_{\overline{\Lambda}}$
- $|\vec{B}|$ enhances $P_{\overline{\Lambda}}$ and suppresses P_{Λ} $(\vec{\mu}_{B,\Lambda} = -\vec{\mu}_{B,\overline{\Lambda}})$

Magnetic field observable

- Vorticity gives positive contribution to P_{Λ} and $P_{\overline{\Lambda}}$
- $|\vec{B}|$ enhances $P_{\overline{\Lambda}}$ and suppresses P_{Λ} $(\vec{\mu}_{B,\Lambda} = -\vec{\mu}_{B,\overline{\Lambda}})$
- We measure $|\vec{B}|$ via splitting between P_{Λ} and $P_{\overline{\Lambda}}$

STAR, Nature 548 (2017) 62548

12

• The EPD has far more coverage than the BBC

East EPD hits rotated by $\Psi_{1,EPD West}$

- The EPD has far more coverage than the BBC
- MUST account for flow!
 - Otherwise, near-zero resolution

(u) 15 10 n -5 -10 -15 10 -15-10-5 5 15 x (cm)

East EPD hits rotated by $\Psi_{1,EPD West}$

- The EPD has far more coverage than the BBC
- MUST account for flow!
 - Otherwise, near-zero resolution

East EPD hits rotated by $\Psi_{1,EPD West}$ (m) V (%) 10 ^ East EPD TPC West EPD 10 STAR preliminary 0 -5 -10 y_{beam} -15 2 10 -15-10 5 15 x (cm) **Positive flow obvious** Joseph Adams - Quark Matter 2019 - Wuhan, China 15 over few tiles

- The EPD has far more coverage than the BBC
- MUST account for flow!
 - Otherwise, near-zero resolution

- Distribution of measured hits not symmetric in φ
 - Weight hits to enforce symmetry ("gain match")

 (cm)

 \succ

- Distribution of measured hits not symmetric in φ
 - Weight hits to enforce symmetry ("gain match")

 (cm)

 \succ

- Distribution of measured hits not symmetric in φ
 - Weight hits to enforce symmetry ("gain match")
- Ψ_1 determined by azimuthal distribution of weighted hits

Event-plane resolution

- Event-plane resolution describes how well \hat{L}_{system} is measured
 - $R_{\text{EP}}^{(1)} \approx \sqrt{2\langle \cos(\Psi_{\text{sub evt. 1}} \Psi_{\text{sub evt. 2}}) \rangle}$
- At 54.4 GeV, Zero Degree Calorimeter (ZDC) is used
 - Peak $R_{\rm EP}^{(1)}$ is ~0.16
 - Beam-Beam Counter (BBC) was used as cross check; see poster by Kosuke Okubo (#746)

Event-plane resolution

- Event-plane resolution describes how well $\hat{L}_{\rm system}$ is measured
 - $R_{\text{EP}}^{(1)} \approx \sqrt{2(\cos(\Psi_{\text{sub evt. 1}} \Psi_{\text{sub evt. 2}}))}$
- At 54.4 GeV, Zero Degree Calorimeter (ZDC) is used
 - Peak $R_{\rm EP}^{(1)}$ is ~0.16
 - Beam-Beam Counter (BBC) was used as cross check; see poster by Kosuke Okubo (#746)
- At 27 GeV, newly installed Event Plane Detector (EPD) is used
 - Peak $R_{\rm EP}^{(1)}$ is ~0.5
 - Significant increase over BBC previously used

Finding Lambdas

- Protons and pions ID with TPC and TOF
- Topological cuts on p-π pairs identify Lambdas
- Some reconstructed Lambdas are "false"

$$\frac{Signal}{Signal + Background} \approx \begin{cases} 27 \text{ GeV}: \begin{cases} 91\%, \Lambda\\ 89\%, \overline{\Lambda} \end{cases} \\ 54 \text{ GeV}: \begin{cases} 86\%, \Lambda\\ 80\%, \overline{\Lambda} \end{cases}$$

The search for $|\vec{B}|$ at 27 GeV

- A high-statistics Au+Au run at 27 GeV with good $R_{\rm EP}^{(1)}$ allows for a high-precision $|\vec{B}|$ measurement
 - This analysis is ongoing
 - We are not yet able to make a claim of the magnetic field
 - With event yield and R⁽¹⁾_{EP} achieved, will reduce errors significantly compared to previous study
 - $\delta P_{\rm H} \propto \frac{1}{\sqrt{\#\Lambda}} \frac{1}{R_{\rm EP}^{(1)}}$

$\sqrt{s_{\rm NN}}$ dependence of P_H

- AMPT shows decrease in $P_{\rm H}$ with increasing $\sqrt{s_{\rm NN}}$ ⁽¹⁾
- Previous studies across broad range of $\sqrt{s_{\rm NN}}$ suggest this trend ⁽²⁾

¹ Y. Jiang, et. al., Phys. Rev., vol. C94, no. 4, p. 044910, 2016

² STAR, Nature 548 (2017) 62548

6 November 2019

Joseph Adams – Quark Matter 2019 – Wuhan, China

$\sqrt{s_{\rm NN}}$ dependence of P_H

- AMPT shows decrease in $P_{\rm H}$ with increasing $\sqrt{s_{\rm NN}}$ ⁽¹⁾
- Previous studies across broad range of $\sqrt{S_{\rm NN}}$ suggest this trend ⁽²⁾
- These studies agree with this trend
- Recent high-statistics run at 19 GeV, 14.5, and 3 GeV will be useful

¹ Y. Jiang, et. al., Phys. Rev., vol. C94, no. 4, p. 044910, 2016

² STAR, Nature 548 (2017) 62548

6 November 2019

$p_{\rm T}$ dependence of $\rm P_{\rm H}$

- We see no dependence on $p_{\rm T}$ at 27 or 54.4 GeV
 - Enough statistics to say ${\rm P_{H}}$ flat in range $0.5 < p_{\rm T} < 1.75~{\rm GeV}$
 - If P_H drops at low p_T due to scattering or high p_T due to jet fragmentation, it must be outside this p_T range

η dependence of $P_{\rm H}$

 $P_{\rm H}~[\%]$

- We see no dependence on η with our statistics and acceptance
 - Consistent with study at 200 GeV ⁽¹⁾

Summary and Outlook

- Various differential measurements of $P_{\rm H}$ were studied at 27 GeV and 54.4 GeV
 - There is an increase in $P_{\rm H}$ for more central events
 - ${\rm P_{H}}$ is flat in the range $0.5 < p_{\rm T} < 1.75$
 - There is no observable η dependence within $|\eta|<1$
- This high-statistics data set at 27 GeV will be able to measure the magnetic field with much smaller error bars than before
- The search will continue at 19.6 and 14.5 GeV
 - High-statistics data sets
 - Uniform Lambda acceptance in the TPC
 - Larger event-plane resolution with the EPD

BACKUP

Finding Lambdas

 The "significance" of the Lambda mass distribution describes the ability of the Lambda-finding algorithm to pick out Lambdas

•
$$\frac{1}{\sqrt{N_{\text{Events}}}} \frac{N_{\Lambda}}{\sqrt{N_{\Lambda} + N_{\Lambda} \text{ background}}} = 0.615$$

•
$$\frac{1}{\sqrt{N_{\text{Events}}}} \frac{N_{\overline{\Lambda}}}{\sqrt{N_{\overline{\Lambda}} + N_{\overline{\Lambda}} \text{ background}}} = 0.320$$

•
$$\frac{N_{\Lambda}}{N_{\Lambda} + N_{\Lambda} \text{ background}} = 0.914$$

•
$$\frac{N_{\overline{\Lambda}}}{N_{\overline{\Lambda}} + N_{\overline{\Lambda}} \text{ background}} = 0.893$$

Finding Lambdas

✓Proton and Pion identification

(for proton)

(for pion)

• $|n\sigma| < 3$

• $|n\sigma| < 3$

* $0.5 < m^2 < 1.5 \ GeV^2/c^4$

 $\cdot -0.029 + 0.017 p < m^2 < 0.04 \ GeV^2/c^4$

Topological cut

Centrality	p-DCA	π -DCA	p- π DCA	Λ-DCA	Decay length
0%-10%	>0.4 cm	>1.5 cm	< 0.9 cm	< 0.8 cm	>4.0 cm
10%-20%	>0.4 cm	>1.5 cm	< 0.9 cm	< 0.8 cm	>4.0 cm
20%-30%	>0.3 cm	>1.3 cm	< 1.0 cm	< 0.9 cm	>3.5 cm
30%-40%	>0.2 cm	>1.2 cm	<1.0 cm	< 0.9 cm	>3.5 cm
40%-50%	>0.2 cm	>1.0 cm	< 1.0 cm	< 1.0 cm	>3.0 cm
50%-60%	>0.2 cm	>0.8 cm	< 1.1 cm	< 1.0 cm	>3.0 cm
60%-70%	>0.1 cm	>0.8 cm	< 1.1 cm	< 1.1 cm	>2.5 cm
70%-80%	>0.1 cm	>0.7 cm	< 1.2 cm	< 1.2 cm	>2.5 cm

Event-plane resolution

• STAR's recent study at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$ had peak resolutions around 0.4

STAR, Phys. Rev. C 98 (2018) 14910 arXiv:190

BBC

BBC

Magnetic field

Vortical coupling:
$$P \propto \omega$$

 $\vec{P}_{\Lambda} \parallel + \hat{J}_{sys} \quad \vec{P}_{\overline{\Lambda}} \parallel + \hat{J}_{sys}$

Magnetic coupling:
$$P \propto \vec{\mu} \cdot \vec{B}$$

 $\vec{P}_{\Lambda} \parallel - \hat{J}_{sys} \quad \vec{P}_{\overline{\Lambda}} \parallel + \hat{J}_{sys}$

$$\begin{pmatrix} \overline{\omega}_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) & \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{pmatrix}$$