Transverse spin asymmetries in the CNI region in polarized proton-proton elastic scattering at STAR Włodek Guryn for the STAR experiment

#### **OUTLINE of the TALK**

- Physics motivation
- Description of the experiment
- Results on  $A_{\rm N}$  and preliminary results  $A_{\rm NN},\,A_{\rm SS}$
- Summary and future plans with STAR





### Source of $A_N$

#### Five helicity amplitudes describe proton-proton elastic scattering



Single spin asymmetry  $A_N$  arises in the CNI region is due to the interference of hadronic non-flip amplitude with electromagnetic spin-flip amplitude.

Any difference from the above is an indication of other contributions: hadronic spin flip caused by resonance (Reggeon) or vacuum exchange (Pomeron) contributions.

B. Z. Kopeliovich and L. I. Lapidus Sov. J. Nucl. Phys. 114 (19) 1974 and N. H. Buttimore, B. Z. Kopeliovich, E. Leader, J. Soffer, T. L. Trueman, Phys. Rev. D59, (1999) 114010.

## Experimental Determination of A<sub>N</sub>

$$A_{N} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \text{ or } A_{N} = \frac{1}{P_{beam}} \frac{N^{\uparrow} / L^{\uparrow} - N^{\downarrow} / L^{\downarrow}}{N^{\uparrow} / L^{\uparrow} + N^{\downarrow} / L^{\downarrow}}$$



With both beams polarized one can take advantage of  $(\uparrow \uparrow, \downarrow \downarrow)$  and  $(\uparrow \downarrow, \downarrow \uparrow)$  combinations (*Square-Root-Formula*) to calculate spin  $(\uparrow \uparrow, \downarrow \downarrow)$  and false asymmetries  $(\uparrow \downarrow, \downarrow \uparrow)$ .

$$\varepsilon_{N}(\varphi) = \frac{(P_{1} + P_{2})\cos\varphi \cdot A_{N}}{1 + \delta} = \frac{\sqrt{N_{L}^{\uparrow\uparrow}(\varphi)N_{R}^{\downarrow\downarrow}(\pi - \varphi)} - \sqrt{N_{R}^{\uparrow\uparrow}(\pi - \varphi)N_{L}^{\downarrow\downarrow}(\varphi)}}{\sqrt{N_{L}^{\uparrow\uparrow}(\varphi)N_{R}^{\downarrow\downarrow}(\pi - \varphi)} + \sqrt{N_{R}^{\uparrow\uparrow}(\pi - \varphi)N_{L}^{\downarrow\downarrow}(\varphi)}}$$

Asymmetry

$$\varepsilon_{F}(\varphi) = \frac{(P_{1} - P_{2})\cos\varphi \cdot A_{N}}{1 - \delta} = \frac{\sqrt{N_{L}^{\uparrow\downarrow}(\varphi)N_{R}^{\downarrow\uparrow}(\pi - \varphi)} - \sqrt{N_{R}^{\uparrow\downarrow}(\pi - \varphi)N_{L}^{\uparrow\downarrow}(\varphi)}}{\sqrt{N_{L}^{\uparrow\downarrow}(\varphi)N_{R}^{\downarrow\uparrow}(\pi - \varphi)} + \sqrt{N_{R}^{\uparrow\downarrow}(\pi - \varphi)N_{L}^{\uparrow\downarrow}(\varphi)}}$$

"False" Asymmetry

where  $\delta = P_1 P_2 (A_{NN} \cos^2 \varphi + A_{SS} \sin^2 \varphi)$ , in our case  $\delta \le 0.028$ 

Since the above is a relative measurement the efficiencies  $\alpha(t, \phi)$  cancel, as does the relative luminosity normalization

Sept. 2012, Diffraction 2012

Włodek Guryn (BNL)

#### **RPs at STAR** – small t setup

Vertical AND Horizontal RP setup for a complete  $\phi$  coverage



4

#### Principle of the Measurement of the Forward Protons

Beam transport equations relate measured position at the detector to scattering angle.

$$\begin{pmatrix} x_D \\ \Theta_D^x \\ y_D \\ \Theta_D^y \\ \Theta_D^y \end{pmatrix} = \begin{pmatrix} a_{11} & L_{eff}^x & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & L_{eff}^y \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \begin{pmatrix} x_0 \\ \Theta_x^* \\ y_0 \\ \Theta_y^* \end{pmatrix}$$

 $x_0, y_0$ : Position at Interaction Point $\Theta^*_x \Theta^*_y$ : Scattering Angle at IP $x_D, y_D$  : Position at Detector $\Theta^x_D, \Theta^y_D$ : Angle at Detector

- Both beams were transversely polarized with 60% polarization.
- Excellent detector performance nearly 100% efficiency and only 5 dead/noisy strips per ~14000 active strips.
- Two separate beam lines allow  $2\pi$  acceptance in  $\phi$ .
- Ideal optics  $\beta^* = 21m$  and terms other than  $L_{Eff}$  in the transport matrix were very small.
- Single beam divergence ~ 40 mrad (typical scattering angle 1 mrad)
- 0.003 < -t < 0.03 (GeV/c)<sup>2</sup>

### **Detector performance and Elastic cuts**



Total no. of events processed (elastic and inelastic)58MTotal no. of events also with elastic trigger33MTotal no. of events also are collinear – used for analysis21M

#### Results A<sub>N</sub> and r<sub>5</sub> arXiv 1206.1928 nucl-ex



Re  $r_5 = 0.0017 + -0.0017$  (stat.) + -0.0061 (syst.) Im  $r_5 = 0.007 + -0.03$  (stat.) + - 0.049 (syst.)

Włodek Guryn (BNL)

#### Result on A<sub>N</sub> arXiv 1206.1928 nucl-ex

Re  $r_5 = 0.0017 + -0.0017$  (stat.) + -0.061 (syst.) Im  $r_5 = 0.007 + -0.03$  (stat.) + - 0.049 (syst.)



Pomeron spin-flip is consistent with zero

## Preliminary Results A<sub>NN</sub>, A<sub>SS</sub>

Gives more information on helicity amplitudes  $\phi_2$  and  $\phi_4$ 



- Both A<sub>NN</sub> and A<sub>SS</sub> are very small ~10<sup>-3</sup> (except for the lowest *t*-range where larger systematic shifts may occur)
- Need more systematic error studies for the final result

# Summary

- 1. We have measured the single spin analyzing power  $A_N$  in polarized pp elastic scattering at  $\sqrt{s} = 200$  GeV, with greatly improved precision at the highest  $\sqrt{s}$  to date, in the CNI region, -t-range [0.005,0.035] (GeV/c)<sup>2</sup>.
- 2. Result is compatible with CNI, which does not have hadronic spin flip amplitude (arXiv 1206.1928 nucl-ex).

Re  $r_5 = 0.0017 + 0.0017$  (stat.) + 0.061 (syst.) Im  $r_5 = 0.007 + 0.03$  (stat.) + 0.049 (syst.)

- 3. Preliminary result on  $A_{NN}$ ,  $A_{ss}$  has been obtained. It indicates that transverse double spin asymmetries are small but non-zero.
- 4. The program of elastic scattering measurements will continue. Results on  $\sigma_{tot}$  at  $\sqrt{s}$  = 200 GeV and more data at  $\sqrt{s}$  = 500 GeV are expected.
- 5. The Central Exclusive Production program has started, talk by L. Adamczyk at this conference later today.