Transverse Single Spin Asymmetry of Electromagnetic Jets for Inclusive and Diffractive Processes at Forward Rapidity in $p^{\uparrow}+p$ Collisions at STAR

Xilin Liang, for the STAR Collaboration

University of California, Riverside

Diffraction and Low-x 2024 Palermo, Sicily, Italy Sept. 10, 2024

Transverse Single-Spin Asymmetry (TSSA, A_N)

- A_N : $\frac{\sigma_L \sigma_R}{\sigma_L + \sigma_R}$
- pQCD predicts A_N is small: $A_N \sim \frac{m_q \alpha_s}{p_T} \sim 0$
- Large A_N at forward region is observed in proton-proton collisions
- Possible theories: TMD framework (Sivers effect, Collins effect), Twist-3 framework

References:

Left Right

(STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)

Indication of Large TSSA from Diffractive Process

- STAR inclusive A_N for forward π^0 in $p^{\uparrow} + p$ collisions : Isolated π^0 has larger A_N than non-isolated π^0
 - Isolated π^0 : No other nearby photons
- Might there be non-trivial contributions to the large A_N from diffractive processes?

Xilin Liang

Inclusive and Single Diffractive EM-jet A_N at STAR

The STAR Experiment

The STAR Experiment is at a collision point at Relativistic Heavy Ion Collider (RHIC) located at Brookhaven National Laboratory (BNL).

- STAR sub-detectors used in measuring the A_N at forward rapidity
 - Forward Meson Spectrometer (FMS): 2.6 $<\eta<$ 4.2 , $\phi\in(0,2\pi)$
 - Roman Pot (RP): detect scattered protons
 - Trigger detectors:
 - $\bullet\,$ Beam-Beam Counter (BBC) , $2.1 < |\eta| < 5$, also used for determine the rapidity gap
 - Vertex Position Detector (VPD)
 - Zero Degree Calorimeter (ZDC)

Datasets and Electromagnetic Jets (EM-jets)

• Inclusive and diffractive EM-jet A_N studies using STAR 2015 and 2017 data

Year	\sqrt{s} [GeV]	$\mathcal{L} \left[\textit{pb}^{-1} ight]$	Polarization orientation	Polarization P [%]
2015	200	52	Transverse	57
2017	510	350	Transverse	55

- Electromagnetic jets (EM-jets) are the jets that are reconstructed using only photons
 - EM-jet reconstruction: Anti-*k*_T, R = 0.7
 - EM-jet correction for p_T: corrected for Underlying Event using off-axis cone method
 - EM-jet correction for energy: corrected to the particle level based on the MC simulation

Multi-dimensional Studies for Inclusive EM-jet A_N at 200 GeV

Single Diffractive EM-jet A_N at 200 GeV

- Single diffractive process: Unpolarized proton intact, with the rapidity gap on the east side $(-5 < \eta < -2.1)$
- The EM-jet A_N for $x_F > 0$ is observed for the case of all photon multiplicity and 1 or 2 photon multiplicity with $> 2 \sigma$ significance of non-zero
- The EM-jet with 1 or 2 photon multiplicity has larger A_N than with 3 or more photon multiplicity

Rapidity Gap Event EM-jet A_N at 200 GeV

- Rapidity gap events: rapidity gap on the east side $(-5 < \eta < -2.1)$; no requirement on protons
- About 70% of the rapidity gap events are single diffractive process events
- The size of EM-jet A_N for rapidity gap events is similar to that for inclusive process
- The A_N for the EM-jet with 1 or 2 photon multiplicity is the largest

Will Single Diffractive Process Contribute to Large A_N in Inclusive Process?

- A_N for the three processes are the same within uncertainty
- Fraction of diffractive cross session in the total inclusive cross section at the forward region is about 20%
 - If the diffractive process have great contribution to large A_N in inclusive process, a huge A_N for diffractive process should be observed
- The single diffractive process can not provide evidence to have significant contribution to large A_N in inclusive process

Semi-exclusive Process EM-jet A_N at 200 GeV

- A non-zero A_N for x_F > 0 is observed with 3.3 σ significance for semi-exclusive process
- Sign of A_N is negative. Theoretical inputs are needed to understand the different sign

Inclusive and single diffractive EM-jet A_N projection

- Expect to have much higher statistical measurements with p[↑] + p at 510 GeV dataset in 2017 compared to p[↑] + p at 200 GeV dataset in 2015
- Allow to explore A_N for single diffractive process at lower x_F region

- ★ A_N for inclusive EM-jets with different jet substructures in $p^{\uparrow} + p$ collisions at 200 GeV at STAR
 - The EM-jet A_N increases with decreasing photon multiplicity and increasing x_F
- ★ EM-jet A_N for the single diffractive processes and rapidity gap events in $p^{\uparrow} + p$ collisions at 200 GeV at STAR
 - The A_N for the processes with polarized proton break-up and unpolarized proton intact is consistent with the inclusive EM-jet A_N within uncertainty
- ★ EM-jet A_N for the semi-exclusive processes in $p^{\uparrow} + p$ collisions at 200 GeV at STAR
 - The A_N for the processes with polarized proton intact and unpolarized proton break-up is non-zero but with negative sign
- ★ The diffractive EM-jet A_N can not provide evidence to have contribution for large A_N in inclusive process at 200 GeV
- ★ Analyses for inclusive and diffractive EM-jet A_N in $p^{\uparrow} + p$ collisions at 510 GeV at STAR are in progress
 - High luminosity dataset from 2017 will significantly improve the measurements

Back up

Possible Mechanisms for TSSA

• TMDs framework:

Sivers effect : correlation between initial parton k_T and proton spin S_p

Ref: D. Sivers, Phys. Rev. D 41, 83 (1990)

Collins effect : correlation between fragmentation hadron k_T and its parent quark spin S_q

Ref: J. Collins, Nucl Phys B 396 (1993) 161

• Twist-3: Quark-gluon / gluon-gluon correlations and fragmentation functions. Ref. J.W. Qiu and G. Sterman, Phys. Rev. Lett. 67 2264 (1991)

Forward Meson Spectrometer (FMS)

- FMS can detect photons, neutral pions, and eta mesons in the forward direction
- $2.6 < \eta < 4.2$

- FMS consists of 1264 Lead-Glass cells with photomultiplier tubes (PMT) readout connected, separated into two regions
- Inner region (green) have smaller size cells than the outer region (red), which can provide better photon separation ability
- All cells have ${\sim}18$ radiation length

Roman Pot (RP)

- Roman Pots (RP) are vessels which house the Silicon Strip Detector planes (SSDs). They are put close to the beam pipe
- RPs are able to detect and track slightly scattered protons close to beamline

- 2 sets of RP (inner and outer) on each side
- Each RP set contains a package above and below the beamline
- 4 SSDs per package (2 x-type and 2 y-type)

- Beam Beam Counter (BBC) can be used to triggering, monitoring luminosity and local polarimetry
- BBC are located on both forward and backward side
 - BBC: $2.1 < |\eta| < 5$
- Benefits for cuts on BBC hits:
 - Reduce accidental coincidence events with a second interaction in the same bunch crossing
 - Get rid of high luminosity events which may cause pile-up effect
 - Determine the rapidity gap for single diffractive process and rapidity gap process