

Charm Meson Tagged Jets in Au + Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

Diptanil Roy

(On behalf of the STAR Collaboration) Rutgers University <u>roydiptanil@gmail.com</u>

September 25, 2024

Introduction

Jets in HIC

Jets in HIC

Jets in HIC: Substructure Modifications

pattern in medium

Ongoing measurement at STAR to quantify substructure modifications

0.04

0.06

0.08

0.1

0.02

Medium Effects

Medium response depends on mass

and flavor of the underlying parton

Motivation to study

heavy flavor tagged jets

Cartoons courtesy Laura Havener (Yale)

HF Jets In Vacuum

Radiation Pattern of Charm in Vacuum

Heavy-flavor emission spectra at small angles suppressed due to dead-cone effect

HF Jets In Vacuum: Fragmentation

 D^0 Momentum Fraction \rightarrow Handle on the Fragmentation Pattern for Charm

HF Jets In Vacuum: Fragmentation

 D^0 Momentum Fraction \rightarrow Handle on the Fragmentation Pattern for Charm

HF Jets In Vacuum: Fragmentation

 D^0 Momentum Fraction \rightarrow Handle on the Fragmentation Pattern for Charm

Softer fragmentation for low energy jets compared to models

Hard Probes 2024, Diptanil Roy

HF Jets In HIC: Radial Profile

Radial Profile of $D^0 \rightarrow Access$ to in-medium diffusion

CMS, Phys. Rev. Lett. 125 (2020) 102001

HF Jets In HIC: Radial Profile

Radial Profile of $D^0 \rightarrow Access$ to in-medium diffusion

CMS, Phys. Rev. Lett. 125 (2020) 102001

The Detector

✓ PID using dE/dx

Images: <u>NSWW</u>

Time-Of-Flight Detector

✓ PID using TOF measurement

 $[|\eta| < 1, 0 < \phi < 2\pi]$

Time Projection Chamber

✓ Measures momenta of charged

tracks $[|\eta| < 1, 0 < \phi < 2\pi]$

✓ PID using dE/dx

Images: NSWW

Time-Of-Flight Detector

✓ PID using TOF measurement

 $[|\eta| < 1, 0 < \phi < 2\pi]$

Time Projection Chamber

- ✓ Measures momenta of charged
 - tracks $[|\eta| < 1, 0 < \phi < 2\pi]$
- ✓ PID using dE/dx

Barrel Electromagnetic Calorimeter

✓ Measures neutral component of jet

energy $[|\eta| < 1, 0 < \phi < 2\pi]$

Images: <u>NSWW</u>

Time-Of-Flight Detector

✓ PID using TOF measurement

 $[|\eta| < 1, 0 < \phi < 2\pi]$

Time Projection Chamber

- ✓ Measures momenta of charged
 - tracks $[|\eta| < 1, 0 < \phi < 2\pi]$
- ✓ PID using dE/dx

Barrel Electromagnetic Calorimeter ✓ Measures neutral component of jet

energy $[|\eta| < 1, 0 < \phi < 2\pi]$

Heavy Flavor Tracker (2014-2016)

 \checkmark Improves position resolution for

secondary vertices

Images: <u>NSWW</u>

Methods

Analysis Details

- Au + Au 200 GeV Run 2014, ~1B events
- Centrality ∈ [0, 80]% (3 bins: [0-10]%, [10-40]%, [40-80]%)
- $0.2 < p_{T,track} [GeV/c] < 30; 0.2 < E_{T,tower} [GeV] < 30$
- $|\eta_{track}| < 1$; $|\eta_{tower}| < 1$
- $D^{0} \rightarrow K^{\mp} + \pi^{\pm} [B.R. = 3.82\%]$
- For D⁰ reconstruction: Tracks contain at least three hits on HFT
- 1 < p_{T,D⁰} [GeV/c] < 10
- K^{\mp}, π^{\pm} originating from D⁰ replaced with D⁰ in the event record before jet clustering
- Anti- k_T full jets of radius R = 0.2, 0.3, 0.4, area-based background subtraction
- $|\eta_{Jet}| < 1 R$
- 2D unfolding done for [Jet p_T , D⁰ transverse momentum fraction] and [Jet p_T , radial profile]

D⁰ Reconstruction at STAR

Topological cuts to improve signal significance of D⁰

D⁰ Reconstruction at STAR

- Topological cuts to improve signal significance of D⁰
- Yield calculation using sPlot method •

Nucl. Instrum. Methods Phys. Res., A (2005) 555

$${}_{s}\mathcal{P}lot\; {}_{s}\mathcal{P}_{n}(m_{K\pi,i}) = rac{\sum_{j=1}^{N_{T}}V_{nj}f_{j}(m_{K\pi,i})}{\sum_{k=1}^{N_{T}}N_{k}f_{k}(m_{K\pi,i})}$$

$$n = n^{\text{th}}$$
 fit component(sig/bkg)
 $N_k = k^{\text{th}}$ yield (T=2)
 $f_k(m_{\kappa\pi,i})$ = per-event PDF value
with k^{th} hypothesis
 $V = \text{cov. matrix}$

th Ci

D⁰ Reconstruction at STAR

- Topological cuts to improve signal significance of D⁰
- Yield calculation using sPlot method

Nucl. Instrum. Methods Phys. Res., A (2005) 555

$${}_{s}\mathcal{P}lot\; {}_{s}\mathcal{P}_{n}(m_{K\pi,i}) = rac{\sum_{j=1}^{N_{T}}V_{nj}f_{j}(m_{K\pi,i})}{\sum_{k=1}^{N_{T}}N_{k}f_{k}(m_{K\pi,i})}$$

 $n = n^{\text{th}}$ fit component(sig/bkg) $N_k = k^{\text{th}}$ yield (T=2) $f_k(m_{\kappa\pi,i}) = \text{per-event PDF value}$ with k^{th} hypothesis V = cov. matrix

Corrections to Spectra

Example prior variation

Data-driven prior

Detector Level Jet p_T [GeV/c]

Detector Level D⁰ z

In the absence of a well-agreed upon prior distribution, best way to vary prior input to unfolding

Resolve differences between detector level observables from simulation and data

Results

HF Jets Yield vs p_{T, Jet}

Function of Jet Transverse Momentum and Centrality

LIDO, Phys. Rev. C 98, 064901

HF Jets Yield vs p_{T, Jet}

Function of Jet Transverse Momentum and Centrality

- LIDO explains peripheral yield well, slightly underpredicts yield in central events
- MPI effects important for low p_{T,D}⁰ jet yield

Hint of suppression for D⁰ jet yield in central collisions

HF Jets Yield vs z

HF Jets Yield vs z

Function of Jet Transverse Momentum Fraction and Centrality

- 2D unfolded with p_{T,Jet}
- LIDO overestimates hard
 fragmented D⁰ jets → Data shows
 softer fragmentation
- Soft fragmented jets yield consistent in central and peripheral collisions

Suppression for hard fragmented D⁰ jets in central collisions

LIDO, Phys. Rev. C 98, 064901

HF Jets Substructure

Radial Profile of $D^0 \rightarrow Access$ to in-medium diffusion

LIDO, Phys. Rev. C 98, 064901

HF Jets Substructure

Radial Profile of $D^0 \rightarrow Access$ to in-medium diffusion

- 2D unfolded with p_{T,Jet}
- LIDO qualitatively explains radial profile trends, along with ratio of central and peripheral

Ratio of radial profile consistent with 1

HF Jets Cone Size Dependence

No jet cone size dependence of medium effects observed vs p_{T,Jet} within uncertainties

HF Jets Cone Size Dependence

No jet cone size dependence of medium effects observed vs z within uncertainties

Comparison with inclusive jets at STAR

Comparison across kinematic ranges

STAR Phys. Rev. C **102**, 054913

22

*p*_{_} [GeV]

Comparison across kinematic ranges

STAR Phys. Rev. C **102**, 054913

Contradictory behaviors just due to different kinematic ranges (?)

Summary

- Exciting measurements for heavy flavor jets at STAR with D⁰ meson tagged jets
- D⁰ jet yield suppressed in central collisions, mainly for hard fragmented jets
- No radial profile modification for D⁰ in jets in central Au + Au collisions
- Qualitative agreement with LIDO for radial profile, yield slightly underpredicted for central collisions

Summary

- No jet cone size dependence observed for yield suppression in medium
- In agreement with models, and STAR's inclusive jet measurement
- R_{CP}(/40-80%) • Behavior across different kinematic ranges different – different effects taking precedence?

¥− Data

1.5

1.5

0.5

Sys. Unc.

TAA Unc.

Central (0-10%)

MidCentral (10-40%

LIDO (MPI = off) Stat. Unc. Of

Au+Au $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ Jets, anti-k_{_1}, R = 0.4, h₁ | < 0.6

20 p_{T,Jet} [GeV/*c*]

1 < p_[GeV/c] < 10

What's next?

- Uncorrected angularities for D⁰ tagged jets at STAR
- Ongoing effort to use multidimensional unfolding to correct for detector effects incredibly challenging with background, even with newer tools like Multifold

STAR

Summary

Differential jet shape for heavy quark in vacuum

STAR

Fragmentation pattern for heavy quark

~ Different fragmentation pattern for heavy quarks