High-p- Direct Photon Azimuthal Correlation Measurements

Ahmed M. Hamed Texas A&M University University of Mississippi

XXIV QUARK MATTER DARMSTADT 2014

Contents

- Motivation
- Theoretical Predictions
- STAR Techniques
- Results ($\sqrt{s_{NN}} = 200 \text{ GeV}$)
- Summary and Outlook

Motivation: Parton Energy Loss in QGP

Energy loss: parton initial energy, path length, color factor, quark flavor

□ EM interacting particles "high-p_T photons": uniform hard scattering vertex in the QCD medium

* <u>2-particles correlations ($\Delta \phi$)</u>: FF of the recoiling parton from direct γ and π^0 :

Parton initial energy "Compton-Scattering"
Different path length "on average"
Different q/g compositions

• Observable: $I_{AA} = D_{AA}/D_{NN}$

***** <u>**Reaction plane** (Δφ)</u>: Azimuthal anisotropy of π^0 and γ

> path length dependence of ΔE \odot Observable: v₂ (p_T) = < cos(2(ϕ_{pT} - ψ_{RP})) >

Theoretical Predictions

- > The medium effect is reflected in the FF of the recoiling partons at low z_T : Large p_T trigger (γ / π^0) OR Low p_T associated (flow)
- > Promptly produced EM-interacting particles of high- p_T are expected to have no preferred direction w.r.t to the reaction plane, i.e. $v_2 = 0$.

✓ $v_2(\gamma) < 0$: jet-medium photons "Fries et al., PRL 90, 132301 (2003)" ✓ $v_2(\gamma) = 0$: direct photons "Compton Scattering" ✓ $v_2(\gamma) > 0$: frag. photons "Zakharov, JETP Lett. 80, 1 (2004)"

STAR Techniques (high-p_T direct γ)

EM neutral cluster identifications (clustering algo., isolation cut)

 EM transverse shower profile + Z_{γγ}: EM neutral energy = π⁰ + other sources of EM neutral energy + γ-rich sample

✓ BEMC: $|\eta| < 1.0, \Delta \phi = 2\pi$ ✓ TPC: $|\eta| < 1.0, \Delta \phi = 2\pi$ ✓ FTPC: 2.5 < $|\eta| < 4.0, \Delta \phi = 2\pi$

$$Y^{\gamma_{dir}+h} = \frac{\left(Y^{\gamma_{rich}+h} - \mathcal{R}Y^{\pi^0+h}\right)}{1 - \mathcal{R}}$$

✓ π^0 purity, BG assumption justifications $\mathcal{R} = \frac{1}{N^{\gamma_{rich}}}$

$$v_2^{\gamma_{direct}} = \frac{v_2^{\gamma_{rich}} - v_2^{\pi^0} \mathcal{R}}{1 - \mathcal{R}}$$

$$\frac{N^{bg}}{2}$$
 \simeq

Previous Results

Integrated and Projected Luminosity in STAR

Table 1: Integrated and projected luminosity for γ_{dir} -triggered at \sqrt{s} =200GeV for different collision systems

Run	System	Integrated Luminosity	Projected Luminosity	pp-equivalent
6	p+p	9 pb^{-1}		9 pb^{-1}
7	Au+Au	$0.50 \ {\rm nb^{-1}}$		20 pb^{-1}
8	d+Au	34 nb^{-1}		$13 {\rm \ pb^{-1}}$
9	p+p	$23 {\rm \ pb^{-1}}$		23 pb^{-1}
10	Au+Au	2.0 nb^{-1}		80 pb^{-1}
11	Au+Au	$1.5 {\rm ~nb^{-1}}$		60 pb^{-1}
12	p+p	25 pb^{-1}		25 pb^{-1}
	U+U	0.26 nb^{-1}		
	Cu+Au	$10 \ {\rm nb^{-1}}$		
13	Au+Au	0		
	p+p	0		
14	Au+Au		9 nb^{-1}	$360 {\rm \ pb^{-1}}$
	p+p		$40 \ {\rm pb^{-1}}$	$40 {\rm \ pb^{-1}}$
15	p+p		40 pb^{-1}	40 pb^{-1}
16	Au+Au		$11 \ {\rm nb^{-1}}$	440 pb^{-1}

Current reconstructed data is sufficient

- > To probe the low z_T region and,
- > To measure the v_2 using the STAR forward detector.

Particle Correlations -- I_{AA}

> Both I_{AA} of direct photons and π^0 are flat within current uncertainties in the measured kinematics range

Reaction-plane Correlations: v₂

v₂ of direct photon is consistent with zero within the current systematic errors
 Remaining bias in reaction-plane determination is small when using forward detector
 Fragmentation photons have negligible effect on overall v₂ of direct photons

> v_2 of π^0 using the FTPC is apparently due to the path length dependence of energy loss.

- $v_2 < 0$: jet-medium photons
- \checkmark v₂ = 0 : direct photons
- \checkmark v₂ > 0 : frag. photons

Summary and Outlook

- STAR high-p_T direct photon azimuthal and neutral pions, correlated with charged hadrons, measurements show:
- ☑ The recoil parton from direct photons and π^0 observed to have constant softening in the QCD medium within the measured kinematic range (E_T(trig) =12 - 24 GeV/c and p_T(assoc) = 3 - 24 GeV/c) -- I_{AA} is flat
 - ☑ The high-p_T direct photons (8-20 GeV) is azimuthally uniform distributed w.r.t reaction plane -- $v_2 = 0$
 - \square More data to improve stat. and sys. errors, and explore further the low z_T region. Stay tuned!

Backup Slides

D (z_T) from different data sets I

11

D (z_T) from different data sets III

Ahmed M. Hamed

D (z_T) from different data sets II

EM Transverse Shower Profile

14

Previous Results-STAR vs. PHENIX

• STAR and PHENIX have similar results using different techniques