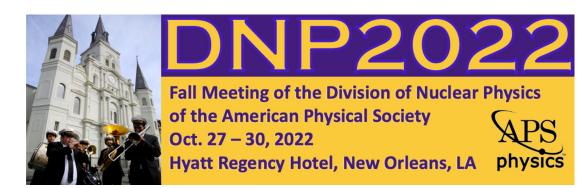


Results from a modified $R_{\Psi 2}$ observable in isobar collisions at STAR

C.W. Robertson (for the STAR Collaboration)

Purdue University



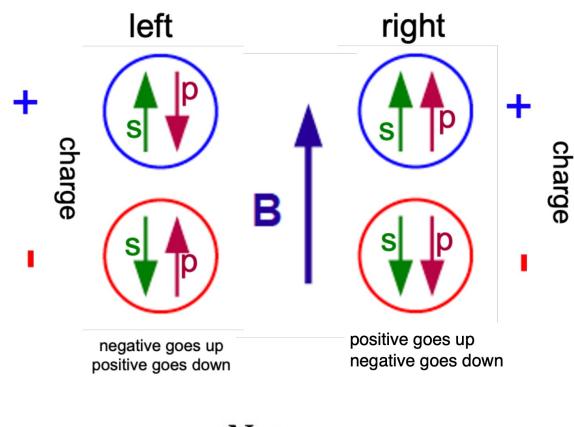
Research supported in part by:

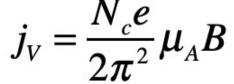
Chiral Magnetic Effect (CME) Introduction

- Quantum Chromodynamics (QCD) chiral anomaly can produce an excess of right/left handed quarks in vacuum
- Charges separate in magnetic field due to spectator protons

• Experimentally, observe charge separation in final state particles [1,2]

[1] D. Kharzeev, R. Pisarski, and M. H. Tytgat, Phys.Rev.Lett. 81, 512 (1998)
[2] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl.Phys. A803, 227 (2008),



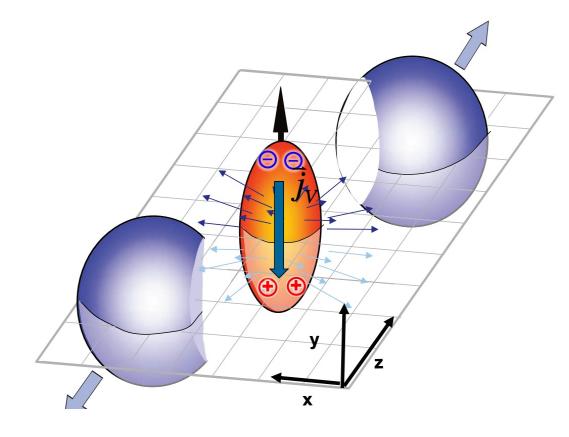


CME Introduction

- **B field** and **J** are aligned perpendicular to reaction plane (Ψ_{RP})
- The azimuthal distribution of particles can be expressed as:

$$\frac{\mathrm{d}N^{\pm}}{\mathrm{d}\phi} \propto 1 \pm 2a_1 \sin(\phi - \Psi_{\mathrm{RP}}) + 2v_2 \cos 2(\phi - \Psi_{\mathrm{RP}}) + \dots$$

 $\begin{array}{ll} \circ \mbox{a_1} & \mbox{Charge dependent CME signal} \\ \circ \mbox{v_2} & \mbox{Elliptic flow coefficient} \\ \circ \mbox{Ψ_{RP}} & \mbox{RP azimuthal angle} \end{array}$



R Observable for CME

- Break an event into two subevents (East and West), by $0.1 < |\eta| < 1.0$

• Event Plane, using empirical resolution correction [3]:

 \circ POI -- Charge Separation (ΔS)

• ΔS are calculated **parallel** and **perpendicular** to the **EP** \odot Example: Parallel ΔS for the West subevent $\odot \Delta S_m^w = \frac{1}{n_w^+} \sum_i^{n_w^+} \sin(\frac{m}{2}(\phi_i^+ - \Psi_m^E)) - \frac{1}{n_w^-} \sum_i^{n_w^-} \sin(\frac{m}{2}(\phi_i^- - \Psi_m^E))$

• Can keep ΔS separate or take the average



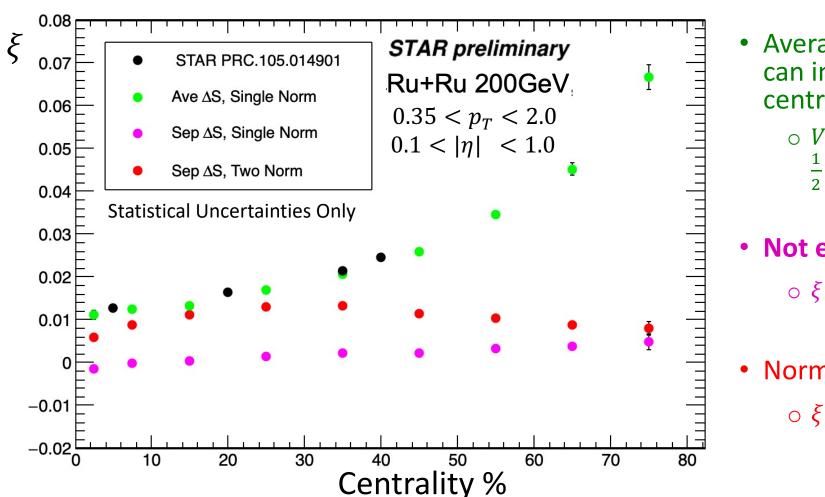
R Observable for CME

• The **R** observable is defined as the ratio between the parallel and perpendicular ΔS distributions.

•
$$R\psi_m = \frac{\frac{\Delta S_m}{\Delta S_{m,sh}}}{\frac{\Delta S_m^{\perp}}{\Delta S_{m,sh}^{\perp}}} = Ce^{\xi x^2/2}$$

- Contributions from **CME** in R_{Ψ_m} should be **concave**
- Width of R distribution, from ΔS distributions: $\frac{1}{\sigma^2} = \left(\frac{1}{\sigma_m^2} \frac{1}{\sigma_{m,sh}^2}\right) \left(\frac{1}{\sigma_{m\perp}^2} \frac{1}{\sigma_{m\perp,sh}^2}\right)$ $\circ \xi = \frac{1}{\sigma'^2} = \left(\frac{\sigma_{m,sh}^2}{\sigma_m^2} - 1\right) - \left(\frac{\sigma_{m,sh}^2}{\sigma_{m\perp}^2} - \frac{\sigma_{m,sh}^2}{\sigma_{m\perp,sh}^2}\right)$: Single (Shuffled) Normalization $\circ \xi = \frac{1}{\sigma'^2} = \left(\frac{\sigma_{m,sh}^2}{\sigma_m^2} - \frac{\sigma_{m\perp,sh}^2}{\sigma_{m\perp}^2}\right)$: Two (Shuffled) Normalization
 - "Shuffled" Delta S distributions ($\Delta S_{m,sh}$) are formed by randomly shuffling particle charges

Results



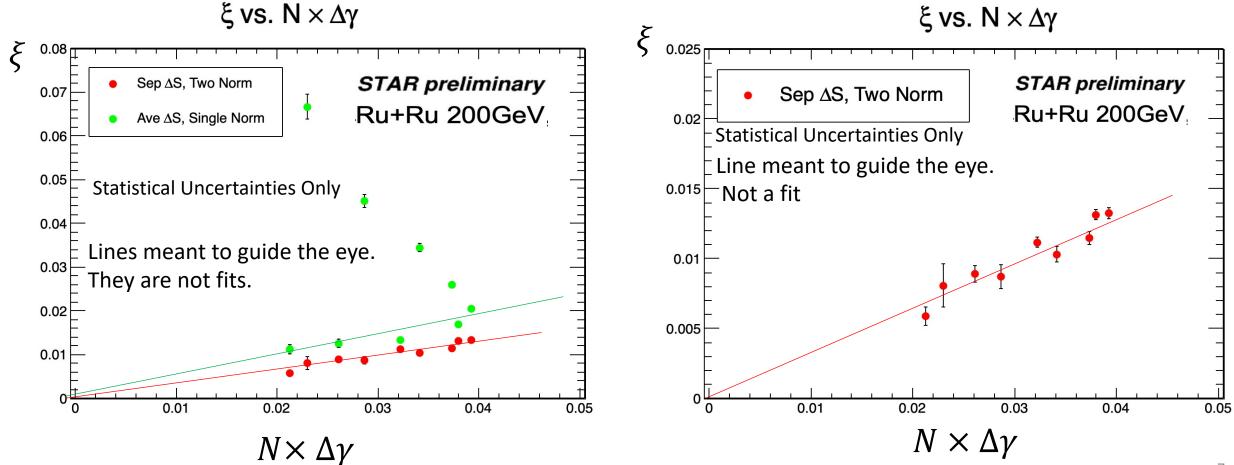
ξ vs. Centrality

- Averaging ΔS between two sub-events can introduce autocorrelation, that is centrality dependent [4] $\circ Var[\Delta S] = \frac{1}{4} \langle \Delta S_E^2 \rangle + \frac{1}{4} \langle \Delta S_W^2 \rangle + \frac{1}{2} \langle \Delta S^E \Delta S^W \rangle$
- Not expected in separate sub-event ΔS $\circ \xi = \frac{1}{\sigma'^2} = (\frac{\sigma_{m,sh}^2}{\sigma_m^2} - 1) - (\frac{\sigma_{m,sh}^2}{\sigma_{m\perp}^2} - \frac{\sigma_{m,sh}^2}{\sigma_{m\perp,sh}^2})$ \circ Single (Shuffled) Normalization
- Normalizations can make a difference

 $◦ ξ = \frac{1}{{\sigma'}^2} = (\frac{\sigma_{m,sh}^2}{\sigma_m^2} - \frac{\sigma_{m\perp,sh}^2}{\sigma_{m\perp}^2})$ ◦ Two (Shuffled) Normalization

Correlation between ξ and N × $\Delta \gamma$

Separate or Average ΔS affect the correlation between ξ and $N imes \Delta \gamma$



Now, onto to Event Shape Engineering (ESE) Analysis_[5]

• ξ is expected to similar to N $\times \Delta \gamma$, which is proportional to $v_{2^{[6]}}$

 $\circ \boldsymbol{\xi}$ was observed to be roughly independent of v_2 with non-zero intercept^[3]

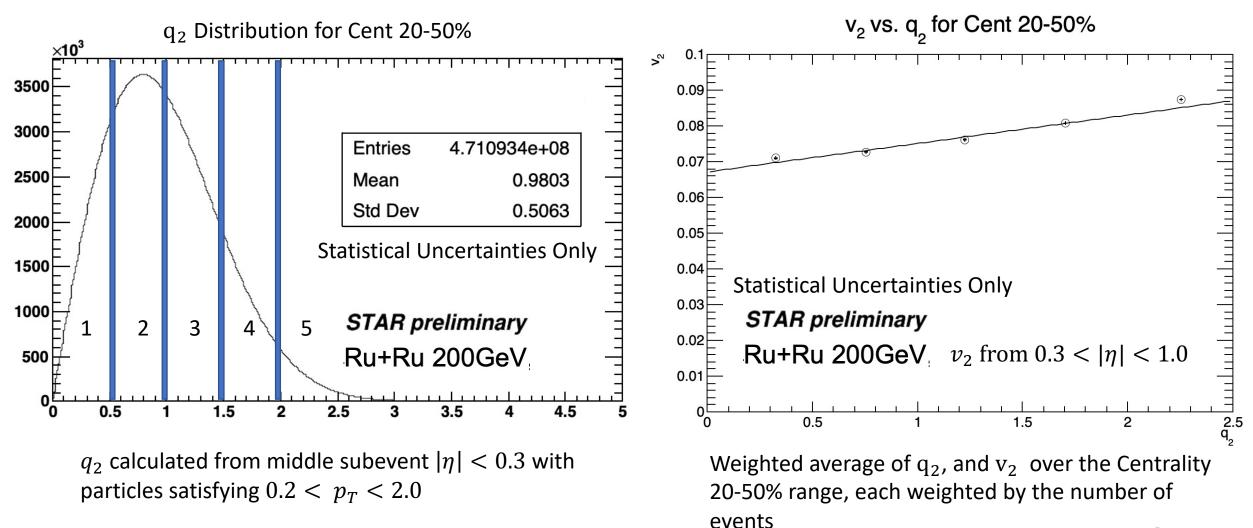
$\,\circ\,$ Want to examine modified ξ vs. v_2 in ESE

[5] J. Schukraft, A. Timmins, and S. A. Voloshin,

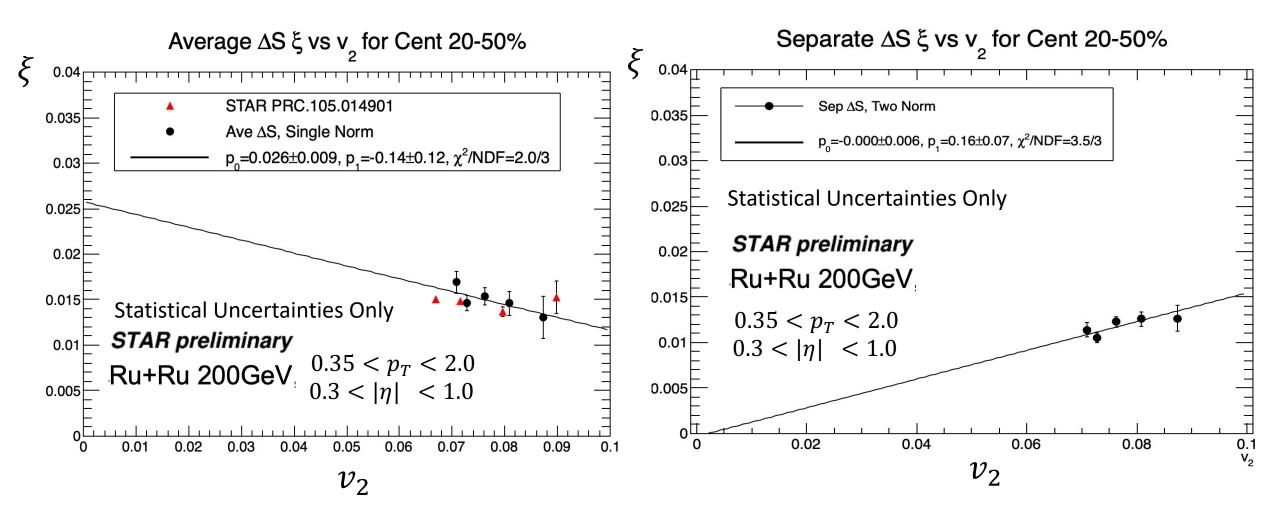
Ultrarelativistic nuclear collisions: event shape engineering, Phys. Lett. B719, 394 (2013)

[6] S. Choudhury et al. , Investigation of experimental observables in search of the chiral magnetic effect in heavy-ion collisions in the STAR experiment, Chinese Phys. C 46 014101 (2022) 8

 $v_2 vs_q_2$



 ξ vs v_2 for Cent 20-50%



The Average ΔS introduces an autocorrelation yielding a non-zero intercept. This intercept is not present in the Separate ΔS case.

Conclusions

A modified R-observable developed for CME search.

- In previous analyses, STAR data are normalized using a single shuffled distribution

 Normalizing by both perpendicular and parallel shuffled distributions makes a
 difference
- STAR data average the ΔS distributions of the subevents

 This averaging introduces an autocorrelation which increases signal
 Yields a non-zero intercept in ESE analysis
- Our results (separate subevents, two shuffled normalizations) indicate **weak centrality dependence** of the modified ξ , similar to v_2 . Modified ξ observed to be proportional to N × $\Delta \gamma$

Backup

ESE Analysis Procedure

- 1) 3 separate centrality bins: 20-30%, 30-40%, 40-50%
- 2) Event Shape Engineering (ESE) procedure: Each event is split into three subevents east $(-1 < \eta < -0.3)$, middle $(-0.3 < \eta < 0.3)$, and west $(0.3 < \eta < 1.0)$
- 3) $q^2 = \sqrt{\left[\left(\sum_{i}^{M} \cos(2\phi_i)^2 + \left(\sum_{i}^{M} \sin(2\phi_i)^2\right)^2\right]/M}$ calculated from the middle subevent (M is the number of particles). Each centrality bin has 5 equal width q2 bins (q2 cuts are the same for all centralities).
- 4) Accumulate $\cos(2(\phi_1 \phi_2))$. One phi from $-1 < \eta < -0.3$ and the other is from $0.3 < \eta < 1.0$
- 5) Event Plane (EP) from $-1 < \eta < -0.3$ and four Δ S distributions (real event, shuffled, both perpendicular and parallel to RP) using POI from $0.3 < \eta < 1.0$, and vice versa
- 6) EP Resolution from $\sqrt{\langle \cos(2(\Psi_1 \Psi_2)) \rangle}$

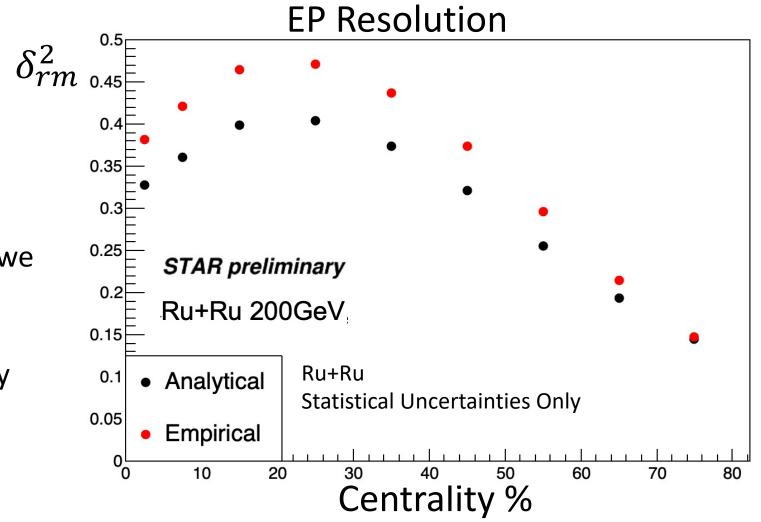
[Steps 4, 5, 6 are done for each q2 bin in each centrality]

ESE Analysis Procedure II

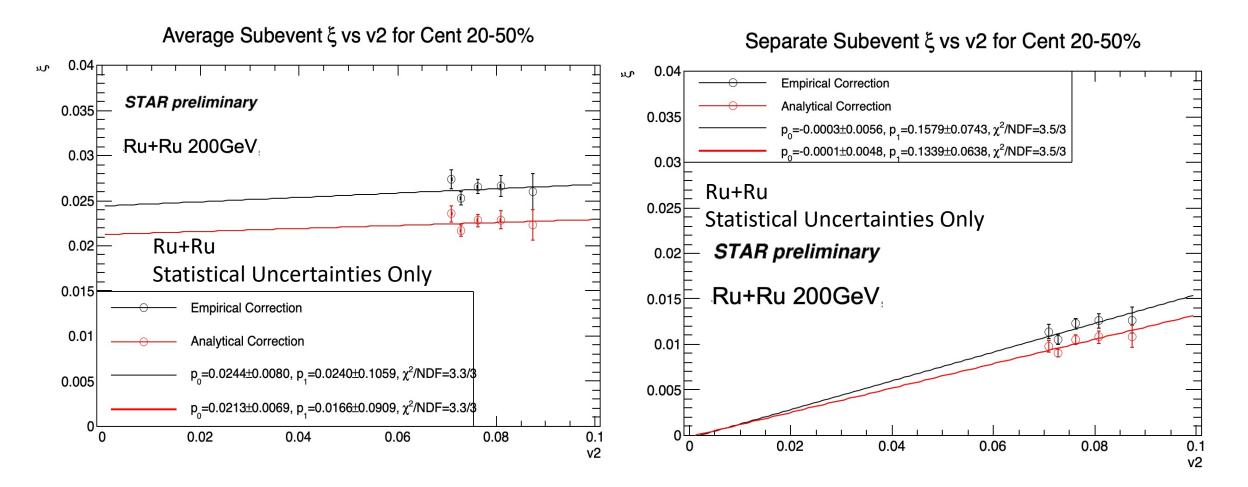
- 7) Add $\cos(2(\phi_1 \phi_2))$ for each q2 bin over the 3 centrality bins and calculate $v_2 = \sqrt{\langle \cos(2(\phi_1 - \phi_2)) \rangle}$
- 8) For each q2 bin in each centrality calculate $\xi = \frac{1}{\sigma'^2}$ via RMS method • $\xi = \frac{1}{\sigma'^2} = (\frac{\sigma_{m,sh}^2}{\sigma_m^2} - 1) - (\frac{\sigma_{m,sh}^2}{\sigma_{m\perp}^2} - \frac{\sigma_{m,sh}^2}{\sigma_{m\perp,sh}^2})$: Single (Shuffled) Normalization • $\xi = \frac{1}{\sigma'^2} = (\frac{\sigma_{m,sh}^2}{\sigma_m^2} - \frac{\sigma_{m\perp,sh}^2}{\sigma_{m\perp}^2})$: Two (Shuffled) Normalization
- 9) Correct by EP resolution (δ_{rm}^2) : $\xi^{Cor} = \xi \times \frac{-1}{\delta_{rm}^2}$
- 10) For each q2 bin, take the average ξ^{Cor} over the three centrality bins weighted by the number of events. This is for the ξ^{Cor} vs. v_2 plot.
- 11) All $\xi's$ on all plots are already corrected for EP Resolution, so we only use ξ^{Cor} for backup slides discussing EP Resolution Correction

Event Plane Resolution Correction

- ξ also affected by EP Resolution (δ_{rm}^2): $\circ \xi^{Cor} = \xi \times \frac{-1}{\delta_{rm}^2}$
 - 2 ways to get EP Resolution, we use empirical in this study
 - \circ All $\xi's$ on all plots are already corrected for EP Resolution

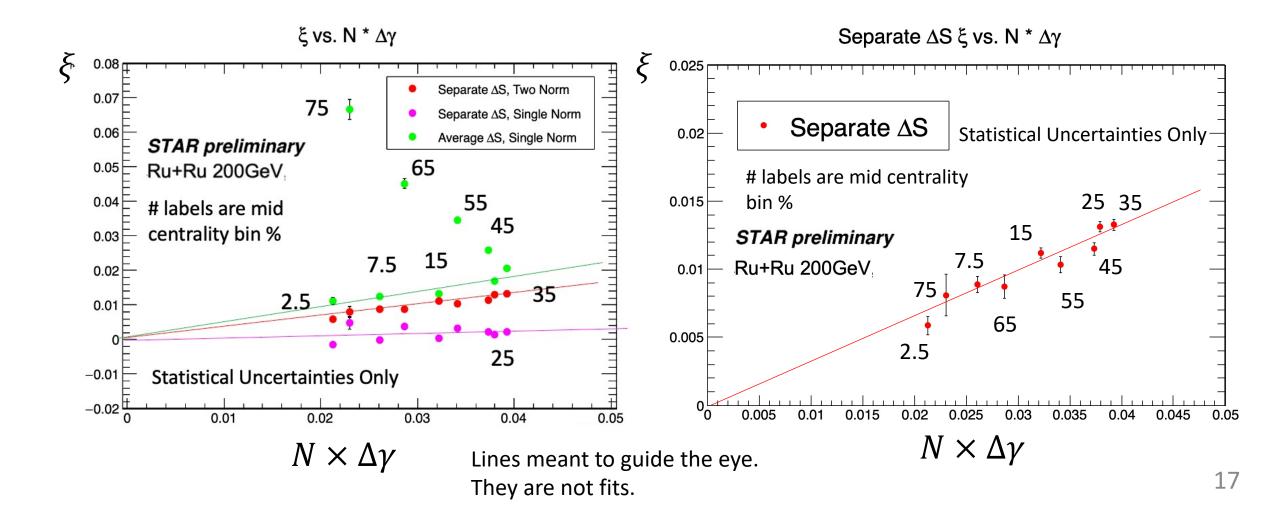


EP Resolution Correction Comparison: ξ vs v₂ for Cent 20-50%

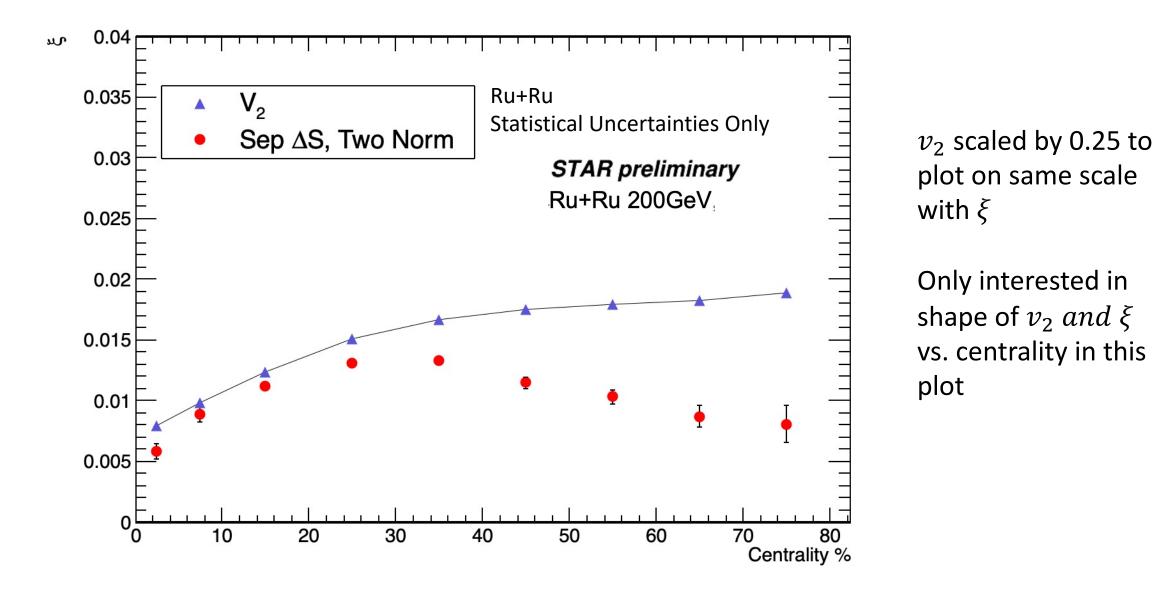


 $\xi vs \langle N_{offline} \rangle \times \Delta \gamma$ Check

Separte ΔS and different treatments of normalization affect the correlation between ξ and $N * \Delta \gamma$



 ξ and v_2 vs. Centrality



Normalization and EP Resolution effects on ξ

