

STAR

Fall Meeting of the Division of Nuclear Physics of the American Physical Society Oct. 27 – 30, 2022 Hyatt Regency Hotel, New Orleans, LA physics

Strange Hadron Production in d+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV Using the STAR Detector

Ishu Aggarwal (for the STAR Collaboration)

Panjab University Chandigarh, India

Science

DNP 2022 27-30, Oct, 2022, New Orleans, LA Supported in part by : U.S. DEPARTMENT OF Office of

Outline :

STAR

- Motivation
- Overview of the STAR Detector
- Data Set and Particle Identification
- Analysis Technique
- Results
 - Ratios of Particle Yield (dN/dy)
 - Rapidity Asymmetry
- Summary

Motivation : Rapidity Asymmetry :

asymmetric systems like d+Au, p+Au etc. can be done using Y_{asym}.

• Unique tool to study contributions from nuclear effects (nuclear shadowing, multiple scattering etc.) to particle production.

We want to look for Y_{asym} for K_S^{0} in d+Au collisions at 200 GeV

DNP 2022

Overview of STAR Detector :

 Main goal of STAR experiment is to study the formation and characteristics of quark gluon plasma (QGP)

• The Solenoidal Tracker At RHIC (STAR) consists of several subdetectors :

- **Tracking :** Time Projection Chamber ($|\eta| < 1.0$)
- Particle Identification : Time Projection Chamber and Time of Flight ($|\eta| < 1.0$)

DNP 2022

Data Set and Particle Identification :

- Collision : d+Au 200 GeV
- Events analyzed ~100M
- Particles studied : K_S^{0}
- Collision centrality : minimum bias
- Rapidities studied :
 - Midrapidity : |y| <0.5
 - Backward rapidities : -0.8 < y <0.4, -0.4 < y <0
 - Forward rapidities : 0 < y <0.4, 0.4 < y < 0.8

 Particle identification is done via <dE/dx> measured in TPC

$$Z = \log \frac{\langle dE/dX \rangle_{measure}}{\langle dE/dX \rangle_{Bichsel}}, n\sigma_p = \frac{Z}{\sigma_p}$$

20

K_S^{0} **Reconstruction :**

 $K_s^0 \rightarrow \pi^+ \pi^-$, $c \tau = 2.68$ cm. Branching Ratio : 69.2%

- Cuts on daughters :
 - Number of hits in TPC >15
 - Pion identification using TPC
- V0 reconstruction cuts :
 - DCA of P+ to P- <= 0.8 cm
 - DCA of V0 to PV < 0.8 cm
 - DCA of pion to PV > 0.7 cm
 - Decay length >= 2.5 cm

https://drupal.star.bnl.gov/STAR/files/startheses/2005/jiang_hai.pdf

DNP 2022

Invariant Mass Distributions :

- Red line : double Gaussian + 2nd order polynomial (signal+background)
- Blue line : 2nd order polynomial (background)

• Green line : double Gaussian (signal)

Ishu Aggarwal

Ratio of dN/dy at Various Rapidities w.r.t. that at Midrapidity (|y| <0.5):

dN/dy values at various rapidities are obtained from measured spectra.

Au going side - backward rapidity *d* going side - forward rapidity

• Ratio of $(dN/dy)/(dN/dy)_{y=0}$ decreases with rapidity.

Rapidity Asymmetry :

- Y_{asym} > 1 is observed at low p_T
 - Signifies the presence of nuclear effects.
- Consistent with unity at high pT.
- More prominent for higher rapidity interval (0.4 < |y| <0.8).

For low p_T (0- 2.0 GeV/c), deviations from unity are :

Rapidity interval	Deviation
0 < y < 0.4	3.4σ
0.4 < y < 0.8	4.8σ

Summary :

- Studied K⁰_s production for different rapidity intervals (midrapidity, |y|<0.5) & (|y|<0.4, 0.4<|y|<0.8) in minimum bias *d*+Au collisions at RHIC.
- Ratio of dN/dy at various rapidities with respect to that at midrapidity shows decreasing trend for the range -0.8 < y < 0.8.
- Y_{asym} >1 is observed at low p_T and is more pronounced at more forward rapidity regions.

