

Measurements of D[±] and D^{*±} production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV from STAR

Xinyue Ju (for the STAR Collaboration) University of Science and Technology of China Lawrence Berkeley National Laboratory

STAR 🖈 Heavy Quark in Heavy-Ion Collisions

- Quark-Gluon Plasma (QGP) is created in ultra-relativistic heavy-ion collisions
- Heavy quarks serve as a sensitive probe to the QGP because of their large masses.
- We study interactions of heavy quarks with the medium:
 - -- energy loss
 - -- collective flow
 - -- hadronization

The STAR Experiment

- TPC: Tracking and PID (dE/dx)
- TOF: PID (1/β)
- HFT: 2014 2016

Excellent DCA resolution

~ 35 μm @ p_T = 1 GeV/c

Phys. Rev. C 99 (2019) 34908

D[±] Measurement: Introduction

1) $D^0 R_{AA}$ measurement at STAR

- D⁰ shows similar suppression as light hadrons at high p_T in central collisions
- Transport models with charm quark energy loss can describe the data

2) D^+ and D^0

Particle symbol	Quark content	Rest mass (MeV/c ²)	Decay channel	Proper decay length (μm)
D ⁰	cu	1864.84 ± 0.17	K⁻ π⁺ 3.89%	~120
D+	cd	1869.62 ± 0.20	Κ⁻ π⁺ π⁺ 8.98%	~312

Charm quark fragmentation f (c —> D): D⁰ ~ 0.55, D⁺ ~ 0.23 (D. E. Groom et al. Eur. Phys. J. C 15 (2000))

D⁺ is important to :

- Constrain total charm cross section
- Offer complementary information to study charm quark dynamics in QGP

Phys. Rev. C 99 (2019) 34908

D[±] Reconstruction Method

- STAR Run2014 @200GeV Au+Au
 - ~ 900 million minbias events
- D⁺ Decay channel : D[±] $\rightarrow \pi^{\pm} \pi^{\pm} K^{\mp}$ (~ 8.98%)
- PID in TPC and TOF:

STAR 🛧

D[±]Cuts Optimization: TMVA

Input variable distributions and Cut efficiencies for centrality 10-40% pt 2.0-3.0 GeV/c

Background sample : wrong-sign $\pi \pi K$ combination from real data

Signal sample: EventGen generator (D[±] decay) & data-driven fast simulation (detector response) Cuts are tuned in 5 p_T bins × 3 centrality bins

D[±] Signal and Invariant Yields

Centrality 0-10%									
	p _T (Gev/c)	Significance w/o TMVA	Significance with TMVA		p _T (Gev/c)	Significance w/o TMVA	Significance with TMVA		
	1.0-2.0	1.1	10.9		4.5-5.0	7.9	9.9		
	2.0-2.5	4.2	18.4		5.0-5.5	6.1	8.1		
	2.5-3.0	10.8	21.4		5.5-6.0	5.8	7.0		
	3.0-3.5	12.2	18.3		6.0-7.0	4.4	6.8		
	3.5-4.0	11.9	16.0		7.0-8.0	3.7	4.0		
	4.0-4.5	11.1	13.53		8.0-10.0	2.8	4.9		

TMVA cuts optimization improves D^{\pm} signal significance, especially at low p_{τ} :

Helps to better constrain the p_T integrated yield

D[±]/D⁰ Ratio in Au+Au Collisions

- D[±]/D⁰ yield ratio is consistent with PYTHIA (p+p @200GeV) and ALICE results @5.02 TeV
- No modification of the relative abundances of D[±] and D⁰ species in Au+Au relative to p+p
- D⁰ and D[±] have same suppression in Au+Au collisions

ALICE Collaboration, JHEP 1810 (2018) 174

STAR A D^{*+} Production in Au+Au Collisions

- D^{*+} feeds down to D^{0} yields $D^{*+} \rightarrow D^{0} + \pi^{+}_{soft}$ $c\tau^{2}[pm/c]$
- Possible hot medium effects :
 - -- D-meson spectral functions predicted to broaden in hot medium [1]
 - -- Re-scattering can lead to yield suppression -- already seen in K*/K

[1] Shuai Y. F. Liu and Ralf Rapp. Phys. Rev. C 97 (2018) 034918

STAR \bigstar D^{*+} Reconstruction Method

- Data set: Run2014 Au+Au @ 200 GeV
 ~ 900Million minimum-bias events
- Reconstruction channel:

 $D^{*+} \rightarrow D^0 + \pi^+_{soft} B.R. = 67.7\%$ $D^0 \rightarrow K^- + \pi^+ B.R. = 3.89\%$ and its charge conjugate channel

D^{*+}/D⁰ Ratio in Au+Au Collisions

- D^{*+}/D⁰ yield ratio in Au+Au collisions @200 GeV is consistent with PYTHIA (p+p @200GeV) and with ALICE results @5.02 TeV
- Ratio of the integrated yields (in 2 < p_T < 10 GeV/c) shows no strong centrality dependence
 K*/K, Phys. Rev. C (2011) 84. 034909.

ALICE Collaboration, JHEP 1810 (2018) 174.

Summary

Better signal significance for D[±] reconstruction using TMVA

- D[±]/D⁰ and D^{*±}/D⁰ yield ratios consistent with PYTHIA. No modification of the relative abundances of these three D-meson species in Au+Au relative to p+p
- > D^{*±}/D⁰ integrated yields ratio shows no strong centrality dependence.
- D⁰, D[±] and D^{*±} can be combined together to provide one D-meson spectrum/R_{AA} and can be used to further deepen our understanding of charm-medium interactions

Backups

 $\frac{d^2N}{2\pi p_T dp_T dy} = \frac{Yield}{2\pi \cdot 2 \cdot BR \cdot N_{evt} \cdot p_T \Delta p_T \Delta y \cdot \varepsilon}$

- Branching ratio = 67.7%*3.89%
- D*+ efficiency = D0 efficiency $\otimes \pi soft$ efficiency
- $\varepsilon_{particle} = \varepsilon_{TPC} \cdot \varepsilon_{PID} \cdot \varepsilon_{HFT} \cdot \varepsilon_{Topo_cuts}$

Efficiency Correction Procedures

 $\frac{d^2 N}{2\pi p_T dp_T dy} = \frac{1}{2 \cdot B.R.} \frac{\Delta N^{raw}}{N_{evt} \cdot 2\pi \cdot p_T \Delta p_T \Delta y} \frac{1}{\varepsilon_{\text{TPC}} \cdot \varepsilon_{\text{PID}} \cdot \varepsilon_{\text{HFT}} \cdot \varepsilon_{\text{Topo}}}$

- $\Delta Nraw$: reconstructed particle counts in each p_T and centrality bin
- ε_{TPC} : TPC acceptance and tracking efficiency (calculated by data embedding)
- ε_{HFT} · ε_{Topo}: HFT acceptance and tracking plus topological cut efficiency (calculated by data-driven fast simulation)
 - ε_{PID} : particle identification efficiency (calculated by K π sample from data)