Illuminating QCD and Nucleon Structure Through the Study of Hadrons Within Jets at STAR

James L. Drachenberg for the STAR Collaboration

Lamar University

Fall Meeting of the APS Division of Nuclear Physics

October 27, 2017

OUTLINE

- Introduction
- RHIC and STAR
- Data and Models
- Near-term Plans
- Summary

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

Helicity

Recent results enable a better picture of gluon and sea-quark helicity

STAR data have played a key role!

The study of spin in particle physics has unlocked doors to a deeper understanding of nucleon structure

- Helicity
- Transversity

Multiple mechanisms in play to constrain transverse spin-structure

Collins Effect in Hadroproduction

• Asymmetry in *distribution of hadrons within jets* $\sim \sin(\phi_S - \phi_H)$

Collins Effect in Hadroproduction

• Asymmetry in *distribution of hadrons within jets* $\sim \sin(\phi_S - \phi_H)$

Collins Effect in Hadroproduction

- Asymmetry in *distribution of hadrons within jets* $\sim \sin(\phi_S \phi_H)$
- Do TMD jet(h) observables *factorize in p+p*? [arXiv:1705.08443]
- How do TMDs evolve, e.g. with (x, Q^2) ?
- Enhance *d*-quark sensitivity

Relativistic Heavy Ion Collider

Solenoidal Tracker at RHIC

Polarized-proton Datasets at RHIC

Unique opportunities to probe nucleon spin structure!

Transverse Luminosity Recorded

Year	\sqrt{s} [GeV]	STAR	(P) [%]
2006	200	8.5 pb ⁻¹	57
2006	62.4	0.2 pb ⁻¹	48
2008	200	7.8 pb ⁻¹	45
2011	500	25 pb ⁻¹	53/54
2012	200	22 pb ⁻¹	61/58
2015	200	53 pb⁻¹	53/57
2015	200 pAu	0.42 pb ⁻¹	60
2015	200 pAl	1.0 pb ⁻¹	54
2017	510	320 pb ⁻¹	56

Dramatically increased figure of merit in recent years

Kinematic Sensitivity at STAR

Access to transversity in interesting region!

- Limited constraints
- Potentially large effects
- Sensitivity to evolution
- Insight into nature of Collins mechanism!

STAR Collins Results at $\sqrt{s} = 200$ and 500 GeV

First Collins asymmetry observations in hadroproduction! New 500 GeV Paper: arXiv:1708.07080

Models based on SIDIS/ e^+e^-

- Assume *universality* and *robust factorization*
- DMP&KPRY: no TMD evol.
- KPRY-NLL: TMD evolution up to NLL

DMP: PLB 773, 300 (2017) KPRY: arXiv:1707.00913

Models based on SIDIS/ e^+e^-

- Assume *universality* and *robust factorization*
- DMP&KPRY: no TMD evol.
- KPRY-NLL: TMD evolution up to NLL

DMP: PLB 773, 300 (2017) KPRY: arXiv:1707.00913

Consistency between models and STAR data at 95% confidence level → Suggests robust factorization and universality

Models based on SIDIS/ e^+e^-

- Assume *universality* and *robust factorization*
- DMP&KPRY: no TMD evol.
- KPRY-NLL: TMD evolution up to NLL

DMP: PLB 773, 300 (2017) KPRY: arXiv:1707.00913

Consistency between models and STAR data at 95% confidence level → Suggests robust factorization and universality

Slight preference for no evolution?

Models based on SIDIS/ e^+e^-

- Assume *universality* and *robust factorization*
- DMP&KPRY: no TMD evol.
- KPRY-NLL: TMD evolution up to NLL

DMP: PLB 773, 300 (2017) KPRY: arXiv:1707.00913

Consistency between models and STAR data at 95% confidence level → Suggests robust factorization and universality

> Slight preference for no evolution? $\chi^2/\nu = 14/10$ (w/o) vs. 17.6/10 (with) For now, "Beauty is in the eye of the beholder!" (a.k.a. need more data!)

STAR Collins Results at $\sqrt{s} = 200$ and 500 GeV

Dependence on j_T (momentum transverse to jet)

Asymmetries appear to decrease with j_T Consistent between energies?

STAR Collins Results at $\sqrt{s} = 200$ and 500 GeV

Dependence on j_T (momentum transverse to jet)

Further investigation of low j_T region needed e.g. unpolarized TMD data, model parameterization, etc.

The Near-term Future: Collins Evolution

2011 and Preliminary 2012 Collins asymmetries suggest x_T scaling *Implications for TMD evolution?*

The Near-term Future: Collins Evolution

Higher precision in 2015 and 2017 will allow more precise comparison!

2011 and Preliminary 2012 Collins asymmetries suggest x_T scaling *Implications for TMD evolution?*

The Near-term Future: p + A Collins

Higher precision in 2015 and 2017 will allow more precise comparison!

First $p^{\uparrow} + Au$ **run!** Should allow for first glimpse of Collins in p + A \rightarrow **Explore hadronization**

2011 and Preliminary 2012 Collins asymmetries suggest x_T scaling *Implications for TMD evolution?*

• Spin physics is a fertile field and p + p plays a critical role

- Spin physics is a fertile field and p + p plays a critical role
- First observations of Collins effect in polarized p + p
 - Possible x_T scaling
 - Consistency with models suggests robust factorization and universality
 - Evolution effects slow (more precise data needed to quantify)

- Spin physics is a fertile field and p + p plays a critical role
- First observations of Collins effect in polarized p + p
 - Possible x_T scaling
 - Consistency with models suggests robust factorization and universality
 - Evolution effects slow (more precise data needed to quantify)
- Recent and near-future runs offer even more potential
 - Substantially increased precision for Collins at 200 and 510 GeV
 - First investigation of Collins in p + A

- Spin physics is a fertile field and p + p plays a critical role
- First observations of Collins effect in polarized p + p
 - Possible x_T scaling
 - Consistency with models suggests robust factorization and universality
 - Evolution effects slow (more precise data needed to quantify)
- Recent and near-future runs offer even more potential
 - Substantially increased precision for Collins at 200 and 510 GeV
 - First investigation of Collins in p + A

Stay tuned for more new results from STAR!

Back-up Slides

STAR Results at $\sqrt{s} = 500$ **GeV**

STAR Results at $\sqrt{s} = 200$ GeV

Transverse Asymmetries for Gluon Jets

STAR Results at $\sqrt{s} = 500$ **GeV**

Jet Reconstruction at RHIC

Formalisms for Transverse Single-spin Asymmetries

Collinear Twist-3 Correlators

Non-zero asymmetry from multi-parton correlation functions

e.g. Qiu and Sterman, PRL 67, 2264 (1991); PRD 59, 014004 (1998)

Correlators closely related to k_{T} moments of TMDs

Boer, Mulders, Pijlman, NPB 667, 201 (2003)

Spin Results at STAR - Drachenberg