Longitudinal Double-spin Asymmetry for Inclusive Jet and Dijet Production in pp Collisions at $\sqrt{s}=510~{ m GeV}$

Zilong Chang for the STAR collaboration

Brookhaven National Laboratory, Upton, New York 11973

November 14th, 2019

The Proton Structure

• Simple quark model: u, u, d quarks

Binding force: strong force

Mediator: gluons

 Lepton-hadron deep inelastic scattering (DIS) experiments to study the internal structure

- Proton parton model: there are lots of quarks and gluons inside the proton
- Parton distribution functions: $f(x, Q^2)$, the probability distribution function depends on the momentum transfer \mathbb{Q}^2 of the probe and the momentum fraction x carried by the parton

Gluons dominate at low x

The Proton Spin

Contributions to the proton spin:

$$S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q,g}$$

- Quark contribution $\Delta\Sigma$: approximately 30% from polarized DIS experiments
- ullet Gluon contributions ΔG : **poorly** constrained from polarized DIS experiments
- ullet $L_{q,g}$: not constrained yet, can be achieved in the future Electron Ion Collider

Polarized hadron-hadron scattering:

High center of mass energy \rightarrow asymptotic freedom at short distances \rightarrow parton-parton scattering

Direct access of polarized gluons

Relativistic Heavy Ion Collider (RHIC)

- The world's only polarized hadron collider
- Polarized pp beams at $\sqrt{s} = 200$ and 510 GeV
- ullet Beam polarization measurements at 12 o'clock of the ring, $\sim 55\%$ to 65%
- Experiment halls where beams collide: STAR detector at 6 o'clock

Direct Access to Gluons at RHIC

• Three partonic scattering processes in the pp collisions are gg, qg, and qq

- The scattered partons can produce a cluster of collimated particles, called a jet
- At RHIC, gg and qg processes dominate jet production

Jet Asymmetry Measurements at RHIC

- Parton helicity: the polarization orientation of the parton is parallel (+) or anti-parallel (-) to its momentum direction
- Scattering combinations: ++ and +-

The partonic longitudinal double-spin asymmetry, â_{LL}, responsible for the difference in jet yields from parton scattering processes with ++ and +-:

$$\hat{a}_{LL}=rac{\hat{\sigma}^{++}-\hat{\sigma}^{+-}}{\hat{\sigma}^{++}+\hat{\sigma}^{+-}}$$

• The **polarized** parton distribution function, $\Delta f = f^+ - f^-$

ullet The jet longitudinal double-spin asymmetry, A_{LL} in ${f pp}$ collisions is

$$A_{LL} \sim \sum_{a,b} \frac{\Delta f_a \Delta f_b}{f_a f_b} \hat{a}_{LL}$$

• gg and qg have large $\hat{a}_{LL} \rightarrow making jet <math>A_{LL}$ sensitive to gluon polarization

STAR Detectors

η	θ
-1.3	149.5°
-1.0	139.6°
0	90°
1.0	40.4°
1.3	30.5°
2.0	15.4°

- \bullet Symmetric in full azimuth, 0 $<\phi<2\pi$
- Tracking charged particles with Time Projection Chamber: $|\eta = -ln(tan(\frac{\theta}{2}))| < 1.3$
- Electro-Magnetic (EM) energy and triggering with:

Barrel EM Calorimeter: $|\eta| < 1.0$, Endcap EM Calorimeter: $1.0 < \eta < 2.0$

 Luminosity monitoring detectors with respect to the collision helicity combinations:

Vertex Position Detector, Beam Beam Counter, and Zero Degree Calorimeter

Jet A_{LL} Measurements at STAR

- Relativity: the invariant mass of a particle, M can be calculated from its momentum $\vec{p} = (p_x, p_y, p_z)$ and energy E, $M^2c^4 = E^2 p^2c^2$
- In high energy physics, c=1, $\vec{p}=(p_T,\eta,\phi)$, where p_T is the transverse momentum
- Jet transverse momentum: $p_{T,jet} = \sum_{i} p_{T,i}$, where i runs over all the particles inside the jet
- Jet energy $E_{jet} = \sum_{i} E_{i}$
- Dijet invariant mass M_{inv} : $M_{inv}^2 = (E_{1,jet} + E_{2,jet})^2 (\vec{p}_{1,jet} + \vec{p}_{2,jet})^2$

 Longitudinally polarized pp collisions: ++ and +-

- Count the number of jets, N++ and N+- for a given jet p_T or a dijet M_{inv}
- Beam polarizations: $P_{B(Y)}$ and relative luminosity: $R = \frac{L^{++}}{L^{+-}}$

$$A_{LL}(p_T/M_{inv}) = \frac{1}{P_B P_Y} \frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}}$$

STAR Inclusive Jet and Dijet Measurements

Inputs: charged tracks + EM towers

- Inclusive jet: $p + p \rightarrow Jet + X$
- Sampled parton kinematics:

$$x pprox rac{2p_T}{\sqrt{s}}e^{\pm\eta}$$

• Dijet: $p + p \rightarrow Jet + Jet + X$

- Opening angle $\Delta \phi = \phi_3 \phi_4 > \frac{2\pi}{3}$, remove hard gluon emissions
- Sampled parton kinematics:

$$x_1 = \frac{1}{\sqrt{s}} (p_{T,3} e^{\eta_3} + p_{T,4} e^{\eta_4})$$

$$x_2 = \frac{1}{\sqrt{s}} (p_{T,3} e^{-\eta_3} + p_{T,4} e^{-\eta_4})$$

Gluon Polarization with STAR 200 GeV Jet A_{LL} Results

- STAR has published a series of inclusive jet and dijet A_{LL} at $\sqrt{s}=200~\text{GeV}$
- $\int_{x_{min}}^{1} dx \Delta g(x, Q^2)$ vs. x_{min} , at $Q^2 = 10 \text{ GeV}^2$

- The STAR 200 GeV results provided the first evidence of positive gluon polarization
- Recent DSSV study shows: $\int_{0.01}^{1} \Delta g(x, Q^2 = 10 \, GeV^2) = 0.296 \pm 0.108$ de Florian et al., arXiv:1902.10548 [hep-ph]

Uncertainty on $x\Delta g$ still large at x < 0.01, higher \sqrt{s} ?

Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at $\sqrt{s} = 510 \text{ GeV}$ STAR, Phys. Rev. D 100, 052005 (2019)

STAR 510 GeV Inclusive Jet A_{II} Results

• Inclusive jet A_{LL} vs. parton jet p_T at $\sqrt{s} = 510$ GeV, STAR, Phys. Rev. D 100,

052005 (2019)

- Much reduced systematic uncertainty than the previous measurements at $\sqrt{s}=200~\text{GeV}$
- Agree well with recent polarized PDF predictions, which are consistent with 200 GeV findings and imply positive ΔG

- Sampled gluon x_{σ} distributions for two jet p_T bins, with $\langle p_T \rangle = 8.0$ and 34.4 GeV/c
- The smaller the jet p_T , the lower the sampled X₀
- Access x_g as low as 0.015

STAR 510 GeV Dijet A₁₁ Results

• Dijet A_{LL} vs. dijet M_{inv} at $\sqrt{s} = 510$ GeV, STAR, Phys. Rev. D 100, 052005 (2019)

- Dijet A_{LL} results are divided into four η topology bins
- x1 and x2 distributions sampled by dijet M_{inv} bin, $17 < M_{inv} < 20 \text{ GeV}/c^2$
- Dijets sample much narrower
 x distribution than the
 inclusive jets do
- Simultaneously sampling x_1 and x_2 permits dijet results to constrain the **shape of** Δg as a function of x

Conclusion

- STAR inclusive jet and dijet double-spin asymmetry measurements are unique to explore gluon polarization in the proton
 - 1 Inclusive jets constrain the magnitude of the gluon polarization
 - 2 Dijets constrain the shape of $\Delta g(x)$
- The 200 GeV results provided the first evidence of the positive gluon polarization
- ullet The first measured 510 GeV results extend the constraint of the gluon polarization down to $x\sim0.015$, STAR, Phys. Rev. D 100, 052005 (2019)

