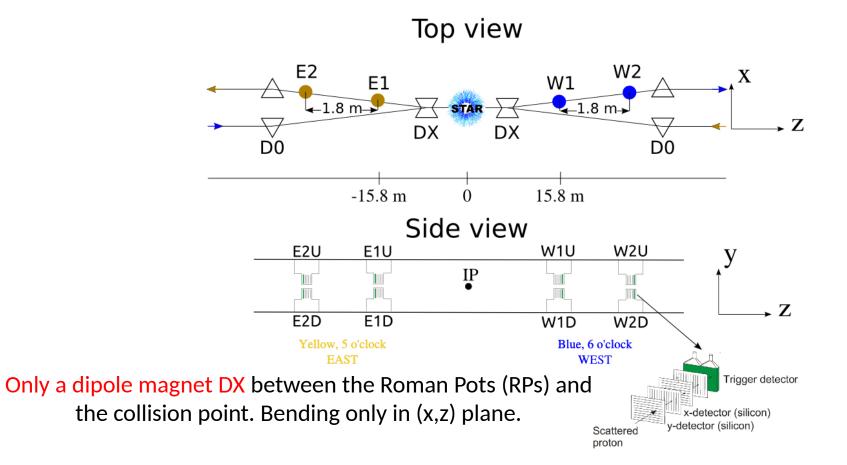
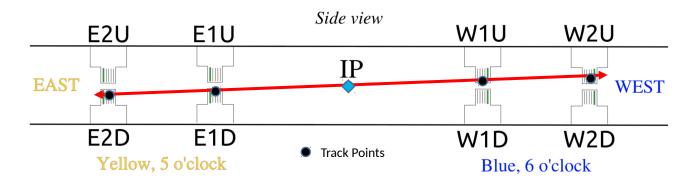

Results on Total and Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV Obtained with the STAR Detector at RHIC

For the STAR Collaboration

Bogdan Pawlik


Institute of Nuclear Physics PAN, Cracow, PL

1. Experimental setup of STAR


- 2. Data set
- 3. Analysis
- 4. Distributions of physics variables (-t, ϕ)
- 5. Simulations and efficiency, acceptance corrections
- 6. Results: $d\sigma/dt$, B-slope, σ_{tot} , σ_{el}

Experimental Setup

In this configuration, RP program at STAR was able to acquire large data samples without special running conditions – mostly for CEP, SDD and CP analyses .

Data Analysis

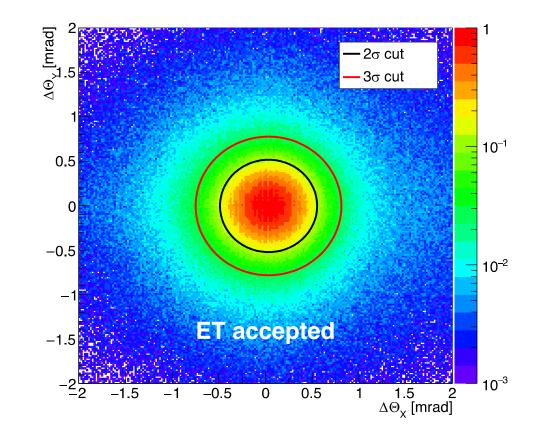
• Trigger was very inclusive: it required only a signal in at least one RP on each side.

 $\mathbf{RP}_{-}\mathbf{ET} = (\mathbf{E1U} \lor \mathbf{E2U} \lor \mathbf{E1D} \lor \mathbf{E2D}) \land (\mathbf{W1U} \lor \mathbf{W2U} \lor \mathbf{W1D} \lor \mathbf{W2D})$

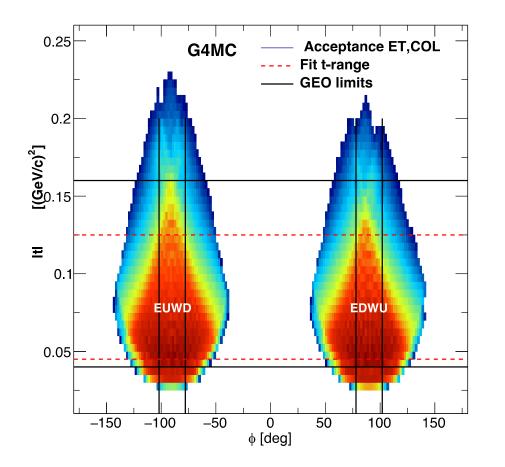
- Need to minimize background and maximize efficiency.
- To reduce background, one needs angle reconstruction => two RPs on each side in up down combination.

$$\begin{split} \mathbf{EU} &= (\mathbf{E1U} \wedge \mathbf{E2U}) \ ; \ \mathbf{ED} &= (\mathbf{E1D} \wedge \mathbf{E2D}) \\ \mathbf{WU} &= (\mathbf{W1U} \wedge \mathbf{W2U}) \ ; \ \mathbf{WD} &= (\mathbf{W1D} \wedge \mathbf{W2D}) \\ \mathbf{ET1} &= (\mathbf{EU} \wedge \mathbf{WD}) \\ \mathbf{ET2} &= (\mathbf{ED} \wedge \mathbf{WU}) \end{split}$$

- Use events with four track points one track point per Roman Pot.
- Finally, choose fiducial region away from the apertures of DX magnet and beam pipe in front of the RPs.


W. Guryn, B. Pawlik

Collinearity $\vec{p_1} = -\vec{p_2} \Rightarrow (\Theta_{x1}, \Theta_{y1}) = (-\Theta_{x2}, -\Theta_{y2}) \Rightarrow \Delta\Theta_x = \Delta\Theta_y = 0$

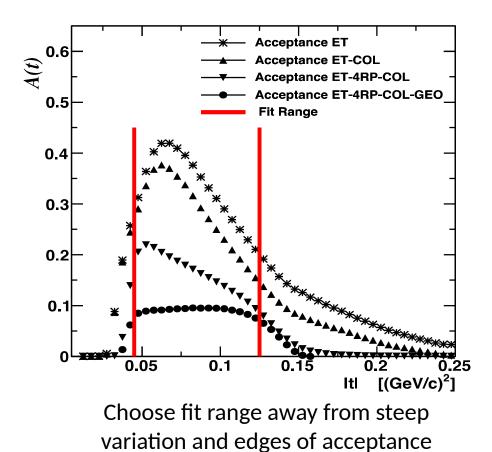

Since the elastic events must satisfy collinearity condition within 2σ .

 $|\theta_{\text{West}} - \theta_{\text{East}}| < 2\sigma_{\theta}$, where = 255 µrad, is required.

Events are well centered within 2σ and 3σ contours.

Geometrical Acceptance GEANT4 MC: I

Choice of geometrical acceptance (t, ϕ) plane $0.04 \le |t| \le 0.16[(GeV/c)^2]$

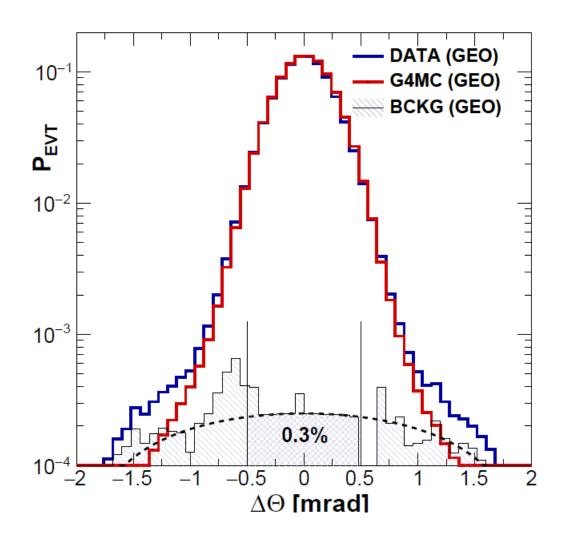

 $79.5 \leq |\phi| \leq 101.5[deg]$

 $2.00 \le \theta \le 4.00 [mrad]$

Fit range is chosen:

- to stay far away from edges where geometrical acceptance rapidly varies – drops
- for GEO filter acceptance is to a good approximation flat (see fig. on next slide)

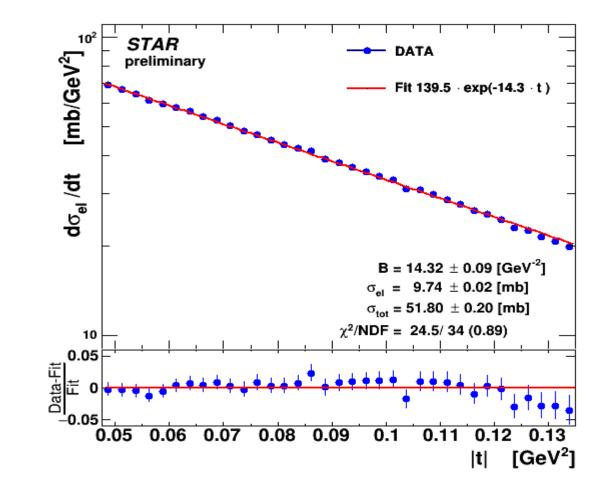
Geometrical Acceptance and Event Yields



Condition	# events		
ET triggered	6.607M		
ET accepted	3.974M		
Collinear	2.696M		
4 PT Collinear	1.100M		
4 PT Collinear Geom.	0.667M		

667K events used for the final analysis

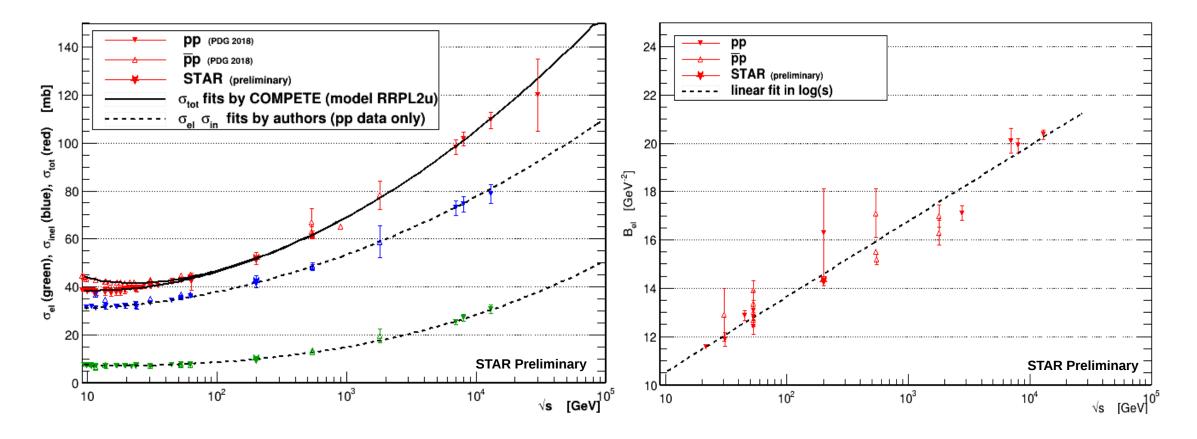
GEANT4 MC: Background Study


- 1. Each distribution is normalized to 1 independently
- 2. MC is normalized to Data in the peak region
- 3. Background mostly due to the rescattered protons in the beam pipe and the DX magnet
- 4. Background is small 0.3%, after $2\Delta\Theta$ cut and after geometrical acceptance cut

Results: Corrected d σ /dt and Fits

$$\frac{d\sigma_{el}}{dt} = \frac{1+\rho^2}{16\pi(\hbar c)^2} \cdot \sigma_{tot}^2 \cdot e^{-B|t|}$$
$$\sigma_{tot}^2 = \left(\frac{16\pi(\hbar c)^2}{1+\rho^2}\right) \left.\frac{d\sigma_{el}}{dt}\right|_{t=0}$$
$$\sigma_{el} = \int \frac{d\sigma_{el}}{dt} dt$$

The value of $\rho = 0.128$ from COMPETE model was used^{*}. * Phys. Rev. Lett. 89 (2002) 201801



Results

Quantity			Statistical	Systematic uncertainties			
name	units	Value	uncertainty	b-tilt	lumi	ρ	full
$\mathrm{d}\sigma_{el} \ /\mathrm{d} t _{t=0}$	$[{\rm mb}/{\rm GeV^2}]$	139.53	± 1.06	$^{+1.07}_{-0.83}$	$^{+10.50}_{-10.07}$	n/a	$^{+10.61}_{-10.16}$
В	$[{\rm GeV}^{-2}]$	14.32	± 0.09	$^{+0.18}_{-0.32}$	n/a	n/a	$^{+0.20}_{-0.33}$
σ_{el}	[mb]	9.74	± 0.02	$^{+0.06}_{-0.04}$	$^{+0.74}_{-0.60}$	n/a	$^{+0.74}_{-0.59}$
σ_{tot}	[mb]	51.81	± 0.20	$^{+0.19}_{-0.61}$	$^{+1.91}_{-1.90}$	$^{+0.2}_{-0.4}$	$^{+1.94}_{-2.05}$
σ_{inel}	[mb]	42.07	± 0.20	$^{+0.20}_{-0.61}$	$^{+2.05}_{-1.99}$	$^{+0.2}_{-0.4}$	$^{+2.08}_{-2.13}$

The main sources of systematic uncertainty are: luminosity measurement and beam tilt angle.

Comparison with the World Data

STAR results compare well with the world data and the COMPETE predictions

Summary

- 1. The STAR experiment at RHIC measured elastic differential cross sections in the |t|-range [0.045, 0.135] (GeV/c)² in p+p collisions at \sqrt{s} = 200 GeV.
- The resulting values of B-slope, $\sigma_{\rm tot}, \sigma_{\rm el}$ are:
 - Slope parameter B = 14.32 ± 0.09 (stat) $^{+0.20}_{-0.33}$ (syst) (GeV/c)⁻²
 - The total cross section $\sigma_{tot} = 51.81 \pm 0.20 \text{ (stat)} + 1.94 \text{ (syst)} \text{ (mb)}$ COMPETE Predictor, Phys. Rev. Lett. 89 (2002) 201801 $\sigma_{tot} = 51.76 \pm 0.12 \text{ (stat)} + 0.4 \text{ (syst)} \text{ mb}$
 - The elastic cross section σ_{el} = 9.74 ± 0.02 (stat) $^{+0.74}_{-0.59}$ (syst) mb

At this point, the largest syst. uncertainties are: 1% due to the beam tilt angle and 7% due to the luminosity. We expect the luminosity uncertainty to be about 3% after the careful calibration.