Production of D[±] Mesons in Au+Au Collisions at $\sqrt{s_{NN}}$

Measured by the STAR Experiment

Jan Vaněk, for the STAR Collaboration

Nuclear Physics Institute of the Czech Academy of Sciences

Abstract

Charm quarks are primarily produced at early stages of ultra-relativistic heavy ion collisions and can be used to probe the properties of the quark-gluon plasma (QGP) created in these collisions. Final-state open charm mesons are usually used experimentally to study the charm quark interaction with the medium. For example, suppression of D-meson production in heavy-ion collisions is sensitive to the energy loss of charm quarks in the QGP. In this poster, the production of D[±] mesons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV measured by the STAR experiment using data taken in 2016 is presented. The secondary decay vertices of D[±] mesons through the hadronic decay channel, D[±] \rightarrow K[∓] $\pi^{\pm}\pi^{\pm}$, are reconstructed topologically utilizing the STAR Heavy Flavor Tracker. The nuclear modification factor of D[±] meson is presented as a function of transverse momentum in 0-10% central collisions.

500 Correct-sign	•	STAR preliminary
150 ^E	T	2016 Au+Au √ <u>s</u> = 200 GeV

- Heavy-ion collisions are used to explore the phase diagram of the nuclear matter.
- Charm quarks are created dominantly at early stages of a A+A collision, before ignition of the QGP fireball.
- Charm quarks pass through the volume of the QGP where they loose energy.
- The energy loss can be quantified by using the nuclear modification factor:

 $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle {\rm d}N^{\rm pp}/{\rm d}p_{\rm T}}$

- D[±] is measured through the hadronic decay channel: $D^{\pm} \rightarrow K^{\mp}\pi^{\pm}\pi^{\pm}$.
- D[±] signal is extracted from $K\pi\pi$ invariant mass $M_{inv}^{K\pi\pi}$ spectrum.
- Background: wrong-sign spectrum scaled using regions outside the D[±] mass peak.
- The raw yield Y_{raw} is calculated by the bin-counting method in $\pm 3\sigma$ region.

0.005

STAR Detector

- STAR is an experiment designed primarily to study properties of strongly-interacting matter and proton spin structure.
- **Time Projection Chamber** (TPC) and **Time Of Flight** (TOF) • Particle momentum (TPC) and identification (TPC and TOF)
- Heavy Flavor Tracker (HFT) is a 4-layer silicon detector used for precise topological reconstruction of heavy-flavor hadrons, such as D[±] [1].
- Pixel detectors 2 layers, Strip detectors 2 layers

Detector Efficiency and Acceptance

- HFT+TPC efficiency determined by data-driven fast-simulator with inputs from data and TPC embedding.
- D[±] decays are generated by PYTHIA [2].
 - EvtGen [3] will be used for the 3-body decay.
- Detector efficiency and resolution effects are applied to the D[±]-decayed daughters according to inputs from embedding and data: - HFT+TPC
 - TPC momentum resolution (embedding)
 - TPC tracking efficiency (embedding)
- 0.004 HFT matching efficiency (data) DCA resolution (data) ھ_⊢ 0.003 Primary vertex position along the beam axis (data) 0.002 Efficiency $\varepsilon(p_{T})$ is obtained from fraction of STAR preliminary simulated D[±] passing the analysis cuts. 0.001 2016 Au+Au *√s_{NN}* = 200 GeV Centrality 0-10% **PID efficiency** of TPC and TOF 5 6 7 8 9 10 Enriched K sample at low p_{T} from data using strict TOF PID cuts. p_⊤ (GeV/c) Pure π sample obtained by reconstruction of K_s^0 . **D[±] Nuclear Modification Factor** Invariant yield is calculated according to: d^2N Y_{raw} $2 \pi p_{\rm T} dp_{\rm T} dy = 2 \pi N_{\rm evt} BR p_{\rm T} \Delta p_{\rm T} \Delta y \varepsilon(p_{\rm T})$ Number of events N_{evt} , branching ratio *BR*, rapidity *y*. **Reference:** combined **STAR preliminary** D[±] 2016 8. D⁰ and D^{*} measurement in \Box D⁰ 2014 Au+Au √*s*_{NN} = 200 GeV .6 200 GeV p+p collisions [4]. D[±] 2016 Glob. Sys. Centrality 0-10% D[±] and D⁰ suppressed Glob. p+p uncert. in central Au+Au collisions. D[±] suppression .0 p+p uncert. comparable to that of D^0 . 0.6 Other centralities are currently being studied. ŏ

Event and Track Selection

- STAR 2016 Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Event selection cuts
- $|v_z| < 6$ cm position of primary vertex along the beam axis
- Track cuts
 - $p_{\rm T}$ > 300 MeV/*c* suppresses combinatorial background from low $p_{\rm T}$ particles
 - Pseudorapidity $|\eta| < 1$ detector acceptance
 - Full coverage in azimuthal angle φ .
 - Number of hits in TPC > 20 good track quality
- Topological cuts
 - Constrain topology of the secondary vertex
 - Decay length, distance among daughter tracks, pointing angle, distance of closest approach to the primary vertex

Conclusion

- D[±] has been measured in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by STAR using data taken in 2016.
- A significant suppression of the high- p_T D[±] production is observed in central Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV and is comparable to that of D⁰.
- These high precision measurements can provide stringent constraints on model calculations.

References

[1] Adamczyk L., et al. (STAR) 2017 Phys. Rev. Lett. 118 212301 [2] PYTHIA: http://home.thep.lu.se/~torbjorn/Pythia.html [3] EvtGen: <u>https://evtgen.hepforge.org</u> [4] Adamczyk L., et al. (STAR) 2012 Phys. Rev. D 86 072013

This poster is supported by grant Inter-Excellence of the Ministry of Education, Youth and Sports of the Czech Republic.

EUROPEAN UNION European Structural and Investment Funds **Operational Programme Research** Development and Education

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations

