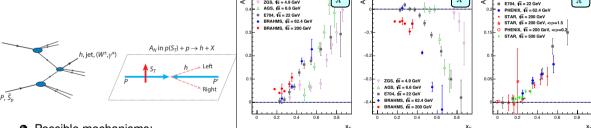
EM-Jet A_N at Forward Rapidities at STAR

Transverse Single-Spin Asymmetry for Electromagnetic (EM) Jets at Forward Rapidities at STAR in p^{\uparrow} + p Collisions at \sqrt{s} = 200 GeV

Latiful Kabir
University of California at Riverside
(For the STAR Collaboration)

October 31, 2020 DNP 2020


Outline

- **1** Transverse Single-Spin Asymmetry (A_N)
- RHIC and The STAR Experiment
- FMS and EEMC Detectors
- Jet Reconstruction
- A_N Extraction Status
- Outlook

Transverse Single-Spin Asymmetry (A_N)

- Unexpected large transverse single-spin asymmetries (A_N) are observed in proton-proton collisions
- pQCD predicts $A_N \sim \frac{m_q}{p_T} \cdot \alpha_S \sim 0.001$

Kane, Pumplin and Repko PRL 41 1689 (1978)

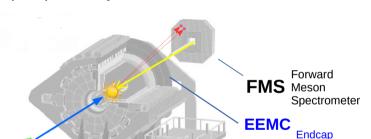
- Possible mechanisms:
 - Twist-3 mechanisms
 - TMD framework: Sivers and Collins effects
 - Diffractive contributions

D.L. Adams *et al.*, PLB **261**, 201(1991)
B. I. Abelev *et al.*, PRL **101**, 222001(2008)

A. Adare *et al.*, PRD **90**, 012006 (2014)

A. Adare *et al.*, PRD **90**, 012006 (2014)
E.C. Aschenauer *et al.*, arXiv:1602.03922

ロト (個) (重) (重) (重) (例)

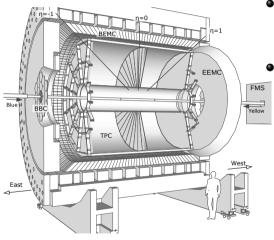

EM-Jet A_N with FMS and EEMC

$$p^{\uparrow} + p \rightarrow EM\text{-jet} + X$$
 \bullet Explore potential sources of large

- Measure subprocess contribution to the large A_N
- Characterize A_N in n, p_T , E and x_E
- EM-jet in FMS and EEMC
- Extract A_M as a function of EM-jet p_T , energy and photon multiplicity
- Dataset:

 A_N

- RHIC Run 15 data
- $p^{\uparrow}p$ collisions at $\sqrt{s} = 200 \text{ GeV}$
- Transversely polarized protons
- $\mathcal{L} = 52 \text{ pb}^{-1}$

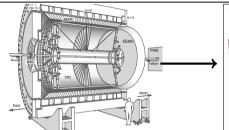

Electromagnetic Calorimeter

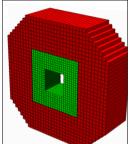
Relativistic Heavy Ion Collider (RHIC)

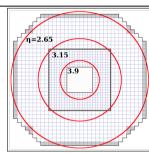
- Only polarized proton-proton collider
- Transverse and longitudinal polarization
- Spin direction varies bucket-to-bucket (9.4 MHz)
- Fill-to-fill variations in spin pattern
- Polarized protons up to $\sqrt{s} = 510 \text{ GeV}$
- Allows to probe hard scattering processes with control of systematic effects

The STAR Experiment at RHIC

Calorimetry System:

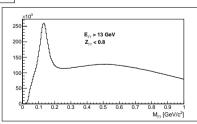

- Barrel Electromagnetic Calorimeter (**BEMC**): $-1 < \eta < 1$
- Endcap Electromagnetic Calorimeter (**EEMC**): 1.1 $< \eta <$ 2
- Forward Meson Spectrometer (**FMS**): $2.65 < \eta < 3.9$


Full azimuthal coverage

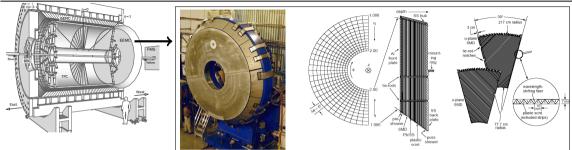

Year	\sqrt{s} (GeV)	Recorded Luminosity (pb ⁻¹)	Polarization Orientation	$B/Y \langle P \rangle$
2009	200	25	Longitudinal	55
2009	500	10	Longitudinal	39
2011	500	12	Longitudinal	48
2011	500	25	Transverse	48
2012	200	22	Transverse	61/56
2012	510	82	Longitudinal	50/53
2013	510	300	Longitudinal	51/52
2015	200	52	Transverse	53/57
2015	200	52	Longitudinal	53/57
2017	510	320	Transverse	55

Polarized pp dataset since 2009

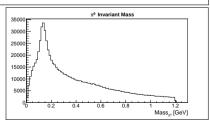
Forward Meson Spectrometer (FMS)


 FMS is a lead-glass electromagnetic calorimeter

 ◆ Array of ~1200 Pb-glass cells coupled to PMTs

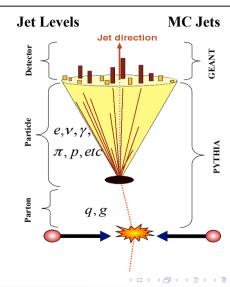

• Forward pseudorapidity coverage: $2.65 < \eta < 3.9$

ullet $\gamma, e^-, e^+ o {\sf EM}$ shower

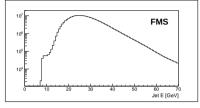

• Observables: $\pi^0 \to \gamma \gamma$

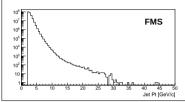
Endcap Electromagnetic Calorimeter (EEMC)

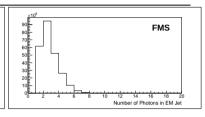
- Coverage: $1.1 < \eta < 2.0, 0 < \phi < 2\pi$
- 12 sectors (matched to TPC sectors) × 5 subsectors x 12 η -bins = 720 towers.
- 1 tower = 24 layers, Layer 1 = pre-shower 1, Layer 2 = pre-shower 2, Layer 24 = post-shower
- SMD u and v planes at $5X_0$
- 288 SMD strips/plane/sector

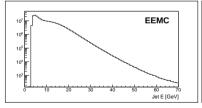


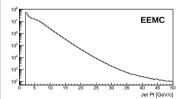
Jet Reconstruction

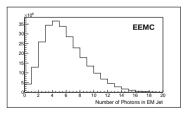

- Vertex z priority: TPC, VPD, BBC
- Reconstructed FMS photons as input for anti-k_T
- Anti- k_T with R = 0.7
- $E_{\gamma} >$ 2.0 GeV (For FMS EM-Jet)
- Jet $p_T > 2.0 \text{ GeV/c}$
- -80 cm $< V_z <$ 80 cm
- Trigger dependent jet-p_T cut

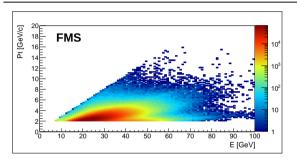

Monte Carlo

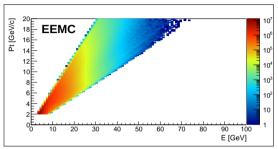

- PYTHIA event generator
- Tune: Perugia 2012 with CTEQ6 structure functions
- GEANT based STAR detector simulation



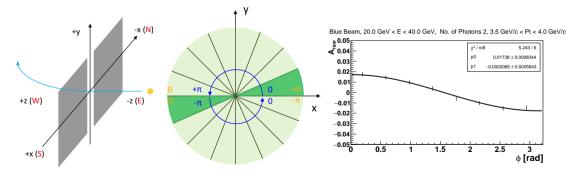

EM-Jets in FMS and EEMC







EM-Jet A_N **Extraction**


Binning:

- Energy bins: 0 20 GeV, 20 40 GeV, 40 60 GeV and 60 80 GeV
- p_T bins: 0 5 GeV/c with 0.5 GeV/c increment, 5.0 6.0, 6.0 8.0 GeV/c
- 16 equal ϕ bins in the range $-\pi$ to π
- Up to 5 photon multiplicity bins
- Separately for $x_F > 0$ and $x_F < 0$

EM-Jet A_N **Extraction**

Cross-ratio formula to calculate A_N

$$\epsilon = A_{N} imes P imes \cos(\phi) \ \epsilon pprox rac{\sqrt{N_{\phi}^{\uparrow}N_{\phi+\pi}^{\downarrow}} - \sqrt{N_{\phi+\pi}^{\uparrow}N_{\phi}^{\downarrow}}}{\sqrt{N_{\phi}^{\uparrow}N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow}N_{\phi}^{\downarrow}}}$$

Current Status and Outlook

- ullet We are studying A_N in the subprocess: $p^{\uparrow} + p \rightarrow EM$ -jet + X
- Understanding the dependences of A_N on photon multiplicity inside EM-jet, jet p_T and jet E can help further characterize large A_N in the forward rapidities
- Current efforts include: improving the EM-jet simulation and better understanding of the sources of systematic uncertainties
- Expect physics results soon!

Work supported by the U.S. Department of Energy, Office of Science, Medium Energy Nuclear Physics program under award number DE-FG02-04ER41325.

