Office of

Science

Transverse Single-Spin Asymmetries for π^0 and Electromagnetic Jets at Forward Rapidities in p⁺+p Collisions at \sqrt{s} = 200 GeV and 500 GeV at STAR

Latiful Kabir University of California at Riverside (For the STAR Collaboration)

October 22, 2021 The 24th International Spin Symposium

Outline

- Transverse Single-Spin Asymmetry (A_N)
- RHIC and the STAR Experiment
- FMS and EEMC Detectors
- **④** π^0 and Jet Reconstruction
- π^0 and EM-jet A_N
- Collins Asymmetry for π^0 in a Jet
- Summary

э

イロト イポト イヨト イヨト

Transverse Single-Spin Asymmetry (A_N)

Unexpectedly large forward transverse single-spin asymmetries (*A_N*) are observed in proton-proton collisions
 Kane, Pumplin and Repko

D.L. Adams *et al.*, Phys. Lett. B **261**, 201(1991) B. I. Abelev *et al.*, Phys. Rev. Lett. **101**, 222001(2008) A. Adare *et al.*, Phys. Rev. D **90**, 012006 (2014) E.C. Aschenauer *et al.*, arXiv:1602.03922

π

0.6

ŕ

■ F704 5 = 22 GeV

PHENIX. 15 = 62.4 GeV

STAR Vs = 200 GeV com=1.5

PHENIX, 15 = 200 GeV, =0.2 STAB, 15 = 500 GeV

0.4

STAR. 15 = 200 GeV

π0

Possible Mechanisms

Sivers Mechanism:

Correlation between proton spin and parton k_T

D. Sivers, Phys. Rev. D 41 (1990) 83; 43 (1991) 261

Signatures: A_N for jets or direct photons, $\overline{W^{+/-}}$. Z^0 . Drell-Yan

Collins Mechanism:

Transversity (quark polarization) \otimes jet fragmentation asymmetry

J. Collins, Nucl. Phys. B 396 (1993) 161

Signatures: Collins effect - Azimuthal asymmetry of hadrons in jets

Twist-3:

Quark-gluon / gluon-gluon correlations and fragmentation functions. A source for Sivers function.

J.W. Qiu and G. Sterman, Phys. Rev. Lett. 67 2264 (199

Relativistic Heavy Ion Collider (RHIC)

- World's only polarized proton-proton collider
- Transverse and longitudinal polarization
- Spin direction varies bucket-to-bucket (9.4 MHz)
- Fill-to-fill variations in spin pattern
- Polarized protons up to $\sqrt{s} = 510 \text{ GeV}$
- Allows to probe polarized hard scattering processes with control of systematic effects

The STAR Experiment at RHIC

• Calorimetry System:

- Barrel Electromagnetic Calorimeter (**BEMC**): $-1 < \eta < 1$
- Endcap Electromagnetic Calorimeter (**EEMC**): $1.1 < \eta < 2$
- Forward Meson Spectrometer (FMS): 2.6 $< \eta < 4.1$
- Full azimuthal coverage

Year	\sqrt{s} (GeV)	Recorded Luminosity (pb ⁻¹)	Polarization Orientation	$\rm B/Y~\langle P angle$
2009	200	25	Longitudinal	55
2009	500	10	Longitudinal	39
2011	500	12	Longitudinal	48
2011	500	25	Transverse	48
2012	200	22	Transverse	61/56
2012	510	82	Longitudinal	50/53
2013	510	300	Longitudinal	51/52
2015	200	52	Transverse	53/57
2015	200	52	Longitudinal	53/57
2017	510	350	Transverse	58

• Polarized pp dataset since 2009

$\pi^{\rm 0}$ and EM-Jet $A_{\rm N}$ with FMS and EEMC at STAR

Motivation:

- Explore potential sources of large A_N
- Study $\pi^0 A_N$ with different topologies
- Isolate initial and final state effects by measuring EM-jet A_N and Collins asymmetry of π^0 inside EM-jet

- Characterize EM-jet A_N as a function of EM-jet p_T , energy and photon multiplicity

• Advantages of EM-jet:

- Allows to investigate EM component of a full jet

- Enables us to classify EM-jet in terms of its constituent photon multiplicity

Dataset:

- RHIC Run 11 and 15 data
- $p^{\uparrow}p$ collisions at \sqrt{s} = 500 GeV and 200 GeV
- Transversely polarized protons with ${<}P{>}$ = 52% and 57%

-
$$\mathcal{L}$$
 = 25 pb⁻¹ and 52 pb⁻¹

$$\mathbf{p}^{\uparrow} + \mathbf{p}
ightarrow \pi^{0} + \mathbf{X}$$

 $\mathbf{p}^{\uparrow} + \mathbf{p}
ightarrow \mathsf{EM-jet} + \mathbf{X}$

 $\textbf{EM-jet} \rightarrow \textbf{Jet}$ reconstructed out of photons only

• • • • • • • •

π^0 and Jet Reconstruction

- $\pi^{0}:$ $p_{T} > 2.0 \text{ GeV/c}$
 - $M_{\gamma\gamma} < 0.3 \text{ GeV/c}^2$

•
$$Z_{\gamma\gamma} = \frac{|E_1 - E_2|}{E_1 + E_2} < 0.7$$

Jet:

- Reconstructed FMS photons / EEMC towers as inputs for FastJet
- Anti- k_T algorithm with R = 0.7
- $E_{\gamma} > 1.0$ GeV (For FMS EM-Jet)
- Jet *p*_T > 2.0 GeV/c

Monte Carlo:

- PYTHIA 6.428 event generator
- Tune: Perugia 2012 with CTEQ6 PDFs
- GEANT based STAR detector simulation

EM-Jet *A_N* **Extraction**

• Cross-ratio formula to calculate A_N

$$\epsilon pprox rac{\epsilon = PA_{N}\cos(\phi)}{\sqrt{N_{\phi}^{\uparrow}N_{\phi+\pi}^{\downarrow}} - \sqrt{N_{\phi+\pi}^{\uparrow}N_{\phi}^{\downarrow}}}
onumber \ rac{1}{\sqrt{N_{\phi}^{\uparrow}N_{\phi+\pi}^{\downarrow}} + \sqrt{N_{\phi+\pi}^{\uparrow}N_{\phi}^{\downarrow}}}$$

• Advantages: Cancels systematics, such as luminosity and detector effects

.

Corrections: Underlying Event and p_T Corrections

- EM-jet p_T values are corrected for contaminations from underlying events (UE) using off-axis cone method
- EM-jet observables are corrected to the particle level

э

イロト イボト イラト イラ

π^0 A_N at 200 GeV and 500 GeV

• $\pi^0 A_N$ increases with x_F and is consistent with previous measurements

Phys. Rev. D 103 092009

► 4 Ξ

• • • • • • • • • • •

- $\pi^0 A_N$ is almost independent of collision energy from 19.4 GeV to 500 GeV
- *A_N* for isolated π⁰ is significantly larger than *A_N* of non-isolated π⁰ Isolated π⁰: π⁰ without any energy deposit around it

э

EM-jet A_N at 200 GeV and 500 GeV

Phys. Rev. D 103 092009

Theory curves: L. Gamberg, Z. Kang, A. Prokudin Phys. Rev. Lett. 110 **23** 232301 (2013)

- EM-jet A_N is small compare to $\pi^0 A_N$
- EM-jets with more than 2 photons have smaller asymmetries than EM-jets consisting of 1 or 2 photons

Impact of forward EM-jet A_N on u and d Sivers function

Collins Asymmetry for π^0 in a Jet at 200 GeV and 500 GeV

Phys. Rev. D 103 092009

- The Collins asymmetries are very small at both energies
- Weak j_T dependence found

$$z_{em} = \frac{E_{\pi}}{E_{jet}}$$

 $j_T = E_{\pi}$ projection perpendicular to jet

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Detailed Investigations of EM-jet A_N at Forward Rapidity at 200 GeV

- EM-jet *A_N* decreases with increasing photon multiplicity (jettiness)
 - *A_N* is the strongest for EM-jets consisting of 1 or 2 photons
 - *A_N* is significantly smaller for EM-jets with 4 or 5 photons
- A_N at $x_F < 0$ is consistent with 0
- Systematic uncertainties (rectangular) come from possible misidentification of the event category

Photon-multiplicity Dependence of EM-jet A_N at Forward Rapidity at 200 GeV

- EM-jet A_N is the strongest for EM-jets consisting of 1 or 2 photons
- EM-jets with 3 photons has a non-zero A_N but lower than that of 1-photon or 2-photon EM-jets
- EM-jets with higher photon multiplicities have significantly smaller asymmetries
- A_N increases with increasing x_F

э

イロト イポト イヨト イヨト

EM-jet A_N at Intermediate Rapidity Using EEMC at 200 GeV

- A_N is significantly smaller for EM-jets in the intermediate rapidity, probing much lower x_F range, compared to forward rapidity
- The trend of EM-jet A_N decreasing with increasing photon multiplicity (jettiness) seems to hold
- A_N is zero at low p_T and positive at higher p_T for $x_F > 0$
- A_N at $x_F < 0$ is consistent with 0

Summary

- We studied $\pi^0 A_N$ with different topologies and A_N for EM-jets using FMS at STAR in pp⁺ collisions at $\sqrt{s} = 200$ and 500 GeV
 - A_N for isolated π^0 is significantly larger than A_N of non-isolated π^0
 - The Collins asymmetry was found to be small
- We also studied A_N for EM-jets of different substructures using FMS and EEMC at STAR at 200 GeV
 - EM-jet A_N decreases with increasing photon multiplicity (jettiness)
- These results provide rich information towards understanding the physics mechanism of large *A_N* in hadron collisions

化口水 化塑料 化医水化医水

Backup Slides

э.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Forward Meson Spectrometer (FMS)

Endcap Electromagnetic Calorimeter (EEMC)

- Coverage: $1.1 < \eta < 2.0, 0 < \phi < 2\pi$
- 12 sectors (matched to TPC sectors) \times 5 subsectors x 12 η -bins = 720 towers.
- 1 tower = 24 layers, Layer 1 = pre-shower 1, Layer 2 = pre-shower 2, Layer 24 = post-shower
- SMD U and V planes at 5X₀
- 288 SMD strips/plane/sector

ъ