Measurements of open charm hadrons in Au+Au collisions at the STAR experiment

Miroslav Simko for the STAR Collaboration Nuclear Physics Institute, The Czech Academy of Sciences

Studying QGP with open charm hadrons – D^0 , D^{\pm} , D_s , Λ_c

- $m_{\rm c} \gg T_{\rm OGP}$, $\Lambda_{\rm OCD}$
- Produced in hard scatterings during early stages of heavy-ion collisions
- Production cross-section in p+p collisions described well by FONLL
- Excellent probe for energy loss mechanisms in the QGP
 - Precise measurements of D⁰ R_{AA} and v_2
- New measurements of D_s , Λ_c production bring more insights into charm quark hadronization

[STAR: PRD 86 (2012) 072013, NPA 931 (2014) 520; CDF: PRL 91 (2003) 241804; ALICE: JHEP01 (2012) 128; FONLL: PRL 95 (2005) 122001]

July 5-12, 2017 Miroslav Simko, EPS-HEP 2017 2/15

STAR Heavy Flavor Tracker

- The Pixel detector: First MAPS technology in a collider experiment
- Pointing resolution: ~20 μm at high p_T (exceeds the requirement of 55 μm for 750 MeV/c kaons)
- Radiation length: 0.4 % X_0 for the 1st layer of pixel
- Recorded $\sim 3 \times 10^9$ good Au+Au events in 2014 and 2016

July 5-12, 2017 [STAR: PRL 118 (2017) 212301]

Miroslav Simko, EPS-HEP 2017

Topological reconstruction with the HFT

STAR

- HFT used for reconstruction of secondary vertices with high precision
- Usage of TMVA for cut optimization
- Combinatorial background greatly suppressed
 - In 2010+2011, D^0 significance was $s/\sqrt{s+b} \sim 13.9$ with 1.2 B events
 - In 2014, ${\rm D^0}$ significance with HFT is $s/\sqrt{s+b}\sim 210$ with 900 M events

Nuclear modification factor R_{AA} of D^0 and D^{\pm}

$$R_{AA} = \frac{dN_{AA}/dp_{T}}{\langle N_{coll} \rangle \times dN_{pp}/dp_{T}}$$

- Improved precision with the HFT
- Results from D^0 and D^{\pm} are consistent
- Yield at $p_{\rm T}$ > 2.5 GeV/c suppressed
- Models with strong charmmedium interactions describe the data

July 5-12, 2017 Miroslav Simko, EPS-HEP 2017 6/15

${ m D}^0$ azimuthal anisotropy v_2

• Significantly above zero for $p_{\rm T}$ > 1.5 GeV/c

• $\mathrm{D}^0 \ v_2$ exhibits same NCQ scaling as light hadrons

[STAR: PRC 77 (2008) 54901, PRL 116 (2016) 62301, PRL 118 (2017) 212301]

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = N_0 \left(1 + \sum_n 2v_n \cos[n(\varphi - \psi_n)] \right)$$

[Theory:

TAMU: Eur. Phys. J. C (2016) 76: 107 & private comm.;

SUBATECH: PRC 91(2015) 054902 & private comm.;

Duke: PRC 92(2015) 024907 & private comm.;

PHSD: PRC 90, 051901 (2014), PRC 92, 014910 (2015);

LBT: Phys. Rev. C 94, 014909 (2016);

3D viscous hydro: PRC 86, 024911 (2012), PRD 91, 074027 (2015)

& private comm.]

[STAR: PRL 118, 212301 (2017)]

- 3D viscous hydro, tuned to light hadrons
- $D_{\rm s}$ spatial diffusion coefficient
- Duke: Langevin simulation with transport properties tuned to LHC data
 - $(2\pi T)D_s = 7$
- Linearized Boltzmann Transport
 - Jet transport model extended to heavy quarks
 - $(2\pi T)D_s = 3-6$
- Parton-Hadron-String Dynamics : Effective potential of c-quarks:
 - $(2\pi T)D_s = 5 12$
- TAMU: non-perturbative T-matrix approach:
 - $(2\pi T)D_s = 5 12$
- SUBATECH: pQCD + hard thermal loops for resummation:
 - $(2\pi T)D_s = 2-4$
- Together: $(2\pi T)D_s = -2 12$

D_{S} azimuthal anisotropy v_2

• First measurement of $D_s \, v_2$ at RHIC

${\rm D}^0$ triangular flow v_3

- First measurement of $\mathrm{D}^0 \ v_3$ at RHIC Data are consistent with NCQ scaling

 SUBATECH model describes the data

[SUBATECH: PRC 91 (2015) 014904]

D_s/D^0 yield ratio

Transverse Momentum p_T (GeV/c)
[TAMU: PRL 110 (2013) 112301]

- Observed strong enhancement of the D_s/D^0 ratio, compared to:
 - Fragmentation ratio measured at HERA
 - PYTHIA version 6.4

[H1 Collaboration, Eur.Phys.J.C38(2005)447] [ZEUS Collaboration, Eur.Phys.J.C44(2005)351]

 Enhancement in 10–40 % centrality is stronger than the TAMU model calculation with charm quark coalescence

Λ_c baryon

•
$$\Lambda_c^{\pm} \rightarrow p^{\pm} K^{\mp} \pi^{\pm}$$
 BR = 5 %

- $c\tau \sim 60 \, \mu \text{m}$
- First measurement of charmed baryons in high-energy heavy-ion collisions

Λ_c/D^0 yield ratio

[STAR: PRL 108 (2012) 072301]

[Theory:

SHM: PRC 79 (2009) 044905; Greco: PRD 90 (2014) 054018; Ko: PRL 100 (2008) 222301]

- Clear enhancement observed compared to PYTHIA
- Compatible with baryon-to-meson ratios of light hadrons
- Ko model describes the data for both di-quark + 1 quark, and three-quark coalescence scenarios
- The Greco model is calculated using all D meson species (D 0 , D $^{\pm}$, and D $_{s}$)
 - May go up by a factor of 1.5 (p+p baseline) once only D^0 mesons are used
- SHM prediction is lower than the data

Summary

14/15

- Comprehensive study of charmed hadrons in Au+Au collisions at STAR
- Heavy Flavor Tracker opens a new era of precision charm quark measurements at RHIC
- First measurement of D^0 v_2 , v_3 , D^{\pm} , and D_s at RHIC
 - The $D^{\pm} R_{AA}$ is consistent with the D^0 measurement
 - $D^0 v_2$: NCQ scaling is observed; Charm quarks flow with the medium
 - $D^0 v_3^-$: Follows the NCQ scaling of light hadrons
 - Enhancement of the D_s/D^0 ratio indication of charm quark coalescence hadronization from the QGP
 - Hint of non-zero $D_s v_2$
- First measurement of Λ_c baryons in heavy-ion collisions
 - Enhancement of the Λ_c/D^0 ratio Indication of charm quark coalescence
- About 2 billion more Au+Au events were recorded by STAR in 2016
- Stay tuned!

Thank you for your attention

July 5-12, 2017 Miroslav Simko, EPS-HEP 2017 15/15

Backup

$\mathrm{D}^0 \ v_2$

Comparison to pions

[STAR: PRL 113 (2014) 142301, PLB 655 (2007) 104]

Comparison to ALICE

[ALICE: arXiv: 1509.06888]

Silicon Strip Detector (SSD)

CCD 1'	22
SSD radius	22 cm
SSD length	106 cm
η coverage	< 1.2
Number of ladders	20
Number of wafers per ladder	16
Total number of wafers	320
Number of strips per wafer side	768
Number of sides per wafer	2
Total number of channels	491520
Silicon wafer size	$75 \times 42 \text{ mm}$
Silicon wafer sensitive size	$73 \times 40 \text{ mm}$
Silicon thickness	300 μm
Strip pitch	95 μm
Stereo angle	35 mrad
R-φ resolution	20 μm
Z resolution	740 μm

July 5-12, 2017 Miroslav Simko, EPS-HEP 2017 18/15

SSD readout refurbishment

- Upgrade from 200 Hz to 1 kHz
- New
 - 40 ladder cards on detector
 - 5 RDO cards
 - 5 Fiber-to-LVDS boards

Fiber-to-LVDS

RDO board – adapted from PXL

Intermediate Silicon Tracker (IST)

Radius	14 cm
Length	50 cm
φ-Coverage	2π
lηl-Coverage	≤1.2
Number of ladders	24
Number of hybrids	24
Number of sensors	144
Number of readout chips	864
Number of channels	110592
R-φ resolution	172 μm
Z resolution	1811 μm
Z pad size	6000 μm
R-φ pad size	600 μm

July 5-12, 2017 Miroslav Simko, EPS-HEP 2017 20/15

Pixel detector (PXL)

DCA pointing resolution	$(12 \oplus 24 \text{ GeV}/p_T c)$
Radii	Layer 1 at 2.8 cm Layer 2 at 8 cm
Pixel size	$20.7 \mu m \times 20.7 \mu m$
Hit resolution	3.7 μm
Position stability	6 μm RMS (20 μm envelope)
Radiation length	Layer 1: $X/X_0 < 0.4\%$ Layer 2: $X/X_0 < 0.5\%$
Number of pixels	~ 356 M
Integration time (affects pileup)	185.6 ms
Radiation environment	$20-90$ kRad/year 2×10^{11} to 10^{12} 1 MeV n eq/cm ²
Installation time	~ 1 day