

HEP 2013 Stockholm 18-24 July 2013 (info@eps-hep2013.eu)

Open Charm Hadron Production in p+p and Au+Au collisions at STAR

David Tlusty NPI ASCR, CTU Prague for the STAR collaboration

1. Motivation

- 2. STAR detector and analysis
- 3. D⁰ in Au+Au 200 GeV collisions
- 4. D^0 and D^* in p+p 500 GeV collisions
- 5. Summary

Heavy Flavor Physics at RHIC

- Questions to be answered
 - Properties of the strongly-coupled system produced at RHIC, and how does it thermalize
 - weak or strong interactions of energetic partons with QCD matter?
 - detailed mechanism for partonic energy loss

Why to study heavy quarks

How to Measure Charm Quarks

How to Measure Charm Quarks

3.69% 2 %6%

- ★ Indirect measurements through semileptonic decay
 - \star can be triggered easily (high p_T)
 - ★ higher Branching Ratio
 - indirect access to the heavy quark kinematics
 - contribution from both charm and bottom hadron decays

- ★ Indirect measurements through semileptonic decay
 - ★ can be triggered easily (high p_T)
 - ★ higher Branching Ratio
 - indirect access to the heavy quark kinematics
 - contribution from both charm and bottom hadron decays

\star Direct reconstruction

- ★ direct access to heavy quark kinematics
- difficult to trigger (high energy trigger only for correlation measurements)
- ★ smaller Branching Ratio
- large combinatorial background (need handle on decay vertex)

Solenoidal **T**racker **A**t **R**HIC : $-1 < \eta < 1, 0 < \phi < 2\pi$

David Tlusty, STAR

Solenoidal **T**racker At **R**HIC : $-1 < \eta < 1, 0 < \phi < 2\pi$

 VPD: minimum bias trigger

David Tlusty, STAR

Solenoidal **T**racker At **R**HIC : $-1 < \eta < 1, 0 < \phi < 2\pi$

The STAR Detector

Solenoidal **T**racker At **R**HIC : $-1 < \eta < 1, 0 < \phi < 2\pi$

Hadron Identification

D⁰ in Au+Au 200 GeV (Run 10 & 11)

S/V(S+B) ~ 14; Mass = 1866 \pm 1 MeV/c² (PDG: 1864.5 \pm 0.4 MeV/c²) split into 7 p_T and 3 centrality bins

D⁰ Au+Au 200 GeV Invariant Yield Spectra & R_{AA}

10

R_{AA} vs p_T in centrality bins

- ★ Suppression at high p_T in central and mid-central collisions
- ★ Enhancement at intermediate p_T.

David Tlusty, STAR

STAR

10

R_{AA} vs p_T in centrality bins

- ★ Suppression at high p_T in central and mid-central collisions
- ★ Enhancement at intermediate p_T.

David Tlusty, STAR

STAR

R_{AA} vs p_T in centrality bins

- ★ Suppression at high p_T in central and mid-central collisions
- ★ Enhancement at intermediate p_T.

He: arXiv:1204.4442

Time evolution by Fokker-Planck Langevin + Hydro simulation coalescence for hadronization collisional+radiative energy loss

Gossiaux: arXiv:1207.5445

time evolution by Boltzmann coalescence for hadronization 0.5 collisional energy loss only

STAR

EPS HEP 2013, Stockholm

10

10

R_{AA} vs p_T in centrality bins

- ★ Suppression at high p_T in central and mid-central collisions
- ★ Enhancement at intermediate p_T.
- D⁰ freeze out earlier than light hadron and/or does not have much radial flow as light quarks

STAR

Number-of-binary-collisions Scaling

FONLL: M. Cacciari, PRL 95 (2005) 122001.
NLO: R. Vogt, Eur.Phys.J.ST 155 (2008) 213
PHENIX e: A. Adare, et al., PRL 97 (2006) 252002.

binary collisions scaling => Charm quark produced at early stage of collisions.

D^0 and $D^* p_{\tau}$ Spectra in p+p 500 GeV

David Tlusty, STAR

D^0 and $D^* p_{\tau}$ Spectra in p+p 500 GeV

Total Charm Cross Section

Summary

- \star D⁰ are measured in Au+Au 200 GeV up to 6 GeV/c for 3 centrality bins.
 - Charm cross sections at mid-rapidity follow number of binary collisions scaling
 - Strong suppression above 2.2 GeV/c in central collisions, consistent with resonance recombination model; the R_{AA} shape consistent with prediction from the SUBATECH group
- \star D⁰ observation might indicate non-zero v₂
- \star D⁰ and D* are measured in p+p 500 GeV up to 6 GeV/c
 - → $d^2 \sigma^{c\overline{c}}/p_T dp_T dy$ consistent with FONLL upper limit.
- ★ Further improvement with Heavy Flavor Tracker

Thank you

STAR Heavy Flavor Tracker Project.

- Reconstruct secondary vertex.
- Dramatically improve the precision of measurements.
- Address physics related to heavy flavor.
- v_2 : thermalization
- R_{CP}: charm quark energy loss mechanism.

- 1) Raw Counts Difference between methods
- nFitPoints difference between MC(nFitPts>25)/MC(nFitPts>15) and Data(nFitPts>25)/Data(nFitPts>15)
- 3) DCA difference between MC(dca<1)/MC(dca<2) and Data(dca<1)/Data(dca<2)</p>

