
Efficient Multi-site Data Movement Using Constraint

Programming for Data Hungry Science

Michal Zerola

Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Czech Republic

E-mail: michal.zerola@ujf.cas.cz

Jérôme Lauret

Brookhaven National Laboratory, Upton, USA

E-mail: jlauret@bnl.gov

Roman Barták

Faculty of Mathematics and Physics, Charles University, Czech Republic

E-mail: roman.bartak@mff.cuni.cz

Michal Šumbera

Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Czech Republic

E-mail: sumbera@ujf.cas.cz

Abstract. For the past decade, HENP experiments have been heading towards a distributed
computing model in an effort to concurrently process tasks over enormous data sets that have
been increasing in size as a function of time. In order to optimize all available resources
(geographically spread) and minimize the processing time, it is necessary to face also the question
of efficient data transfers and placements. A key question is whether the time penalty for moving
the data to the computational resources is worth the presumed gain. Onward to the truly
distributed task scheduling we present the technique using a Constraint Programming (CP)
approach. The CP technique schedules data transfers from multiple resources considering all
available paths of diverse characteristic (capacity, sharing and storage) having minimum user’s
waiting time as an objective. We introduce a model for planning data transfers to a single
destination (data transfer) as well as its extension for an optimal data set spreading strategy
(data placement). Several enhancements for a solver of the CP model will be shown, leading
to a faster schedule computation time using symmetry breaking, branch cutting, well studied
principles from job-shop scheduling field and several heuristics. Finally, we will present the
design and implementation of a corner-stone application aimed at moving datasets according
to the schedule. Results will include comparison of performance and trade-off between CP
techniques and a Peer-2-Peer model from simulation framework as well as the real case scenario
taken from a practical usage of a CP scheduler.

1. Introduction
Paramount to a distributed computing model (Grid or Cloud) is the key problem of processing
in the most efficient manner vast amount of data in a minimum time. Since the beginning
of the decade, High Energy and Nuclear Physics (HENP) communities have been tackling
this challenging problem with an ultimate focus to optimize all of their available resources
(geographically spread) and thus minimize the processing time it takes to go over their steadily
growing data sets.

One of such communities is the computationally challenging experiment STAR at RHIC
(Relativistic Heavy Ion Collider [1]) located at the Brookhaven National Laboratory (USA). In
addition to a typical Peta-byte scale storage requirements and large computational need this
experiment as a running experiment acquires a new set of valuable experimental data every year,
introducing other dimension of safe data transfer to the problem. From the yearly data sets,
the experiment may produce many physics-ready derived data sets which differ in accuracy as
the problem is better understood and as time passes.

The user’s task is typically embarrassingly parallel; that is, a single program can run N times
on a fraction of the whole data set split into N sub-parts with usually no impact on science
reliability, accuracy, or reproducibility. For a computer scientist, the issue then becomes how to
split the embarrassingly parallel task into N jobs in the most efficient manner while knowing
the data set is spread over the world and/or how to spread ’a’ dataset and place best the data
for maximal efficiency and fastest processing of the task.

Rather than trying to solve the whole complex issue including optimal data placement
strategy (distribution of centrally acquired data to other processing sites) with an emphasis
on efficient further processing we split the problem into several stages. In this paper we focus
on one block of this complex task which is of immediate need by the physicists: “how to
bring the desired dataset to a single destination in the shortest time?” By isolating the data
transfer/placement and the computational challenges from each other, we get an opportunity
to study the behavior of both sets of constraints separately. The paper summarize the work
from [9] addressed to more theoretically based audience from automated planning community. In
addition we present extensions for other real-life requirements in 4.1 and propose an architecture
for further implementation in 6.1.

2. Related works
The needs of large-scale data intensive projects arising out of several fields such as bio-informatics
(BIRN, BLAST), astronomy (SDSS) or HENP communities (STAR, ALICE) have been the
brainteasers for computer scientists for years. Whilst the cost of storage space rapidly decreases
and computational power allows scientists to analyze more and more acquired data, appetite for
efficiency in Data Grids becomes even more of a prominent need.

Decoupling of job scheduling from data movement was studied by Ranganathan and Foster in
[2]. The authors discussed combinations of replication strategies and scheduling algorithms, but
not considering the performance of the network. The nature of high-energy physics experiments,
where data are centrally acquired, implies that replication to geographically spread sites is a
must in order to process data distributively. Intention to access large-scale data remotely over
wide-area network has turned out to be highly ineffective and a cause of often poorly traceable
troubles.

The authors of [3] proposed and implemented improvements to Condor, a popular cluster-
based distributed computing system. The presented data management architecture is based on
exploiting the workflow and utilizing data dependencies between jobs through study of related
DAGs. Since the workflow in high-energy data analysis is typically simple and embarrassingly
parallel without dependencies between jobs these techniques don’t lead to a fundamental
optimization in this field.

Sato et al. in [4] and authors of [5] tackled the question of replica placement strategies
via mathematical constraints modeling an optimization problem in the Grid environment. The
solving approach in [4] is based on integer linear programming while [5] uses a Lagrangian
relaxation method [6]. The limitation of both models is a characterization of data transfers
which neglects possible transfer paths and fetching data from a site in parallel via multiple links
possibly leading to better network utilization.

We focus on this missing component considering wide-area network data transfers pursuing
more efficient data movement. An initial idea of our presented model originates from Simonis
[7] and the proposed constraints for the traffic placement problem were expanded primarily
on link throughputs and consequently on follow-up transfer allocations in time. The solving
approach is based on the Constraint Programming technique [8], used in artificial intelligence
and operations research. One of the immense advantages of the constrained based approach is
a gentle augmentation of the model with additional real-life rules.

3. Formal model
The input of the problem consists of two parts. The first part represents the (Grid) network and
file origins. The network, formally a directed weighted graph, consists of a set of nodes N (sites)
and a set of directed edges E (links). The weight of an edge describes the number of time units
needed to transfer a file of one size unit. Information about files’ origins is a mapping of each
file to a set of sites where the file is available. The second part of the input is a user request,
namely the set of files that need to be transferred to a common destination site. The solving
process is composed of two stages:

• a transfer path for each file, i.e., one origin and a valid path from the origin to the
destination, is selected (planning)

• for each file and its selected transfer path, the particular transfers via links are scheduled
in time such that the resulting plan has minimal makespan (scheduling)

The goal of the scheduling stage is to evaluate the path configuration in the sense of the
required makespan. Essentially, it works as an objective function because the realization of the
schedule will not depend on particular transfer times calculated in this phase, as we will show
in section 6.

Both stages iterate until the plan of transfers with the minimal makespan is found (see Alg.
1). As we can see, the phases are not strictly separated, while planning function takes makespan
as an argument. This allows to prune the search space already during generating transfer paths
using constraint 6 explained latterly. In [9] we identified that about 90% of overall time is spent
in the planning stage hence we put our effort to improve this stage. The following formalism

Algorithm 1 Pseudocode for a search procedure.

makespan ← sup
plan ← Planner.getFirstPlan()
while plan != null do

schedule ← Scheduler.getSchedule(plan, makespan) {Branch-and-Bound on makespan}
if schedule.getMakespan() < makespan then

makespan ← schedule.getMakespan() {better schedule found}
end if
Planner.getNextPlan(makespan) {next feasible plan with cut constraint}

end while

is used to define a constraint model describing the planning sub-problem. The set OUT(n)

consists of all edges leaving node n, the set IN(n) of all edges leading to node n. Input received
from a user is a set of demands D needed at the destination site dest. In our notation demands
represent file requests and we will use this symbolism in the following text. For every demand
d ∈ D we have a set of sources orig(d) - sites where the demanded file d is already available.
We will present the link-based approach for modeling planning constraints. Another approach
called path-based can be found in [9].

The essential idea of the link-based approach is using one decision {0, 1} variable Xde for
each demand and link of the network, denoting whether demand d is routed over edge e or not.
Constraints (1-3), ensure that if all decision variables have assigned values then the resulting
configuration contains transfer paths. These constraints alone allow isolated loops along with
the valid paths and therefore precedence constraints (4) are used to eliminate such loops.

∀d ∈ D :
∑

e∈∪OUT(n|n∈orig(d))

Xde = 1,
∑

e∈∪IN(n|n∈orig(d))

Xde = 0 (1)

∀d ∈ D :
∑

e∈OUT(dest(d))

Xde = 0,
∑

e∈IN(dest(d))

Xde = 1 (2)

∀d ∈ D,∀n /∈ orig(d) ∪ {dest(d)} :
∑

e∈OUT(n)

Xde ≤ 1,
∑

e∈IN(n)

Xde ≤ 1,
∑

e∈OUT(n)

Xde =
∑

e∈IN(n)

Xde
(3)

Precedence constraints (4) use non-decision positive integer variables Pde representing possible
start times of transfer for demand d over edge e. Let durde be the constant duration of transfer
of d over edge e. Then constraint

∀d ∈ D ∀n ∈ N :
∑

e∈IN(n)

Xde · (Pde + durde) ≤
∑

e∈OUT(n)

Xde · Pde (4)

ensures a correct order between transfers for every demand, thus restricting loops. Unfortunately,
constraints (4) do not restrict the domains of Pde until the values Xde are known and therefore
we suggest using a redundant constraint (5) to estimate better the lower bound for each Pde.
Let start be the start vertex of e not containing demand d (start /∈ orig(d)):

min
f∈IN(start)

(Pdf + durdf) ≤ Pde (5)

Variables Pde can be used not only to break cycles but also to estimate the makespan of the
plan. The idea is that according to the number of currently assigned demands per some link and
their possible starting times, we can determine the lower bound of the makespan for the schedule
that will be computed later in the scheduling stage. Hence if we have some upper bound for the
makespan (typically obtained as the best solution from the previous iteration of planning and
scheduling) we can restrict plans in next iterations by the following constraint:

∀e ∈ E : min
d∈D

(Pde) +
∑

d∈D

Xde · durde + SPe < makespan, (6)

where SPe stands for the value of the shortest path from the ending site of e to dest.

Free space
end(Td,out)

size(d)

start(Td,inc)

Figure 1. For a demand d passing a site with limited space (via the links inc and out) a new
task is created with the starting and ending times set according to file transfers Td,inc and Td,out.

4. Search heuristics
The constraint model needs to be accompanied by a clever branching strategy to achieve good
runtimes. A clever branching strategy is a key ingredient of any constraint satisfaction approach,
especially as the problem is NP-hard (as we have proven in [9]).

According to the measurements shown in [9], the majority of time was spent in the planning
phase, hence we proposed an improved variable selection heuristic that exploits better the actual
transfer times by using information from variables Pde. In particular, the heuristic, called
MinPath, suggests to instantiate first variable Xde such that the following value is minimal:

inf Pde + durde + SPe, (7)

where inf Pde means the smallest value in the current domain of Pde.
Concerning the value selection heuristics, both variants were tested, particularly Increasing

(assign first 0, then 1) and Decreasing (assign first 1, then 0) value iteration order.
In the scheduling phase two approaches were considered. First one, called SetTimes, is based

on determining Pareto-optimal trade-offs between makespan and resource peak capacity. A
detailed description and explanation of this approach can be found in [10]. The second one
is a texture-based heuristic called SumHeight, using ordering tasks on unary resources. The
implementation used originates from [11] and supports Centroid sequencing of the most critical
activities.

4.1. Additional real-life constraints
The constraint model, formally presented in the previous sections, covers mostly fundamental
and essential attributes required in order to solve efficient data transfers. However, reality can
provide us with further restrictions we have to deal with, as far as we intend to tighten the gap
between simulation and real life production.

4.1.1. Storage space capacity. One of the facts we have suppressed during scheduling file
transfers via selected paths is a storage space limitation at sites. If a file is going to be transferred
through a site, there must be guaranteed that from the start of a transfer over incoming link
till the end of a transfer over the outgoing link, enough storage space is available at the relevant
site. In fact, due to the current disk price, there will hardly be the limitations of holding the
bulk of files at intermediate sites for a quite short amount of time, but the model is capable to
deal with it as well.

This restriction can be easily achieved by introducing a cumulative resource for each site with
the capacity equal to the free space of the site. If the demand d enters the site via the link inc
and leaves it via the link out we create a new task assigned to this cumulative resource. The
start time of the task will be equal to the start time of the task Td,inc while the finish time to
the finish time of the task Td,out, as depicted in Fig. 1.

1×

2×

4×

0×

1×

3×

1×

dummy vertex and edge

Shared

slowdown 1×

Figure 2. An illustration of a dummy vertex and edge insertion into the graph. Original
slowdown factors of links affected are reduced by 1, corresponding in this case to a limitation of
a sharing resource.

4.1.2. Shared links. So far, we have assumed that all links incoming or outgoing from any site
have their own bandwidth (slowdown factor) that is not affected by others. Nevertheless, in
reality this is not always feasible, since several links leading to a site usually share the same
router and/or physical fiber having throughput less than the sum of their own values. Hence,
one can’t use such links simultaneously at their maximum bandwidths.

We express this restriction by adding dummy vertices and edges to the network graph and by
modifying relevant slowdown factors. For a site where the restriction exists due to the shared
fiber or router, a new dummy vertex is added together with a dummy edge, a connection with
the original site vertex. The slowdown factor of the added edge is set to the real limitation and
slowdown factors of affected shared links are reduced by this amount.

5. Comparative studies
We have implemented and compared performance of alternatives of the model, namely using link-
based and path-based approaches. Several combinations of heuristics were tried and in addition
a comparison with a simulated Peer-2-Peer method is shown.

For implementation of the solver we use Choco 1, a Java based library for constraint
programming. The Java based platform allows us an easier integration with already existing
tools in the STAR environment.

5.1. Peer-2-Peer (P2P) simulator
The P2P model is well known and successfully used in areas such as file sharing,
telecommunication or media streaming. P2P model doesn’t allow file transfers via paths, only
by direct connections. We implemented a P2P simulator by creating the following work-flow:
a) put an observer for each link leading from an origin to the destination; b) if an observer
detects the link is free, it picks up the file at his site (link starting node), initiates the transfer,
and waits until the transfer is done. We introduced a heuristic for picking up a file as typically
done for P2P. The link observer picks up a file that is available at the smallest number of sites.
If there are more files available with the same cardinality of orig(n), it randomly picks any
of them. After each transfer, the file record is removed from the list of possibilities over all
sites. This process is typically resolved using distributed hash table (DHT) [12], however in our
simulator only simple structures were used. Finally an algorithm terminates when all files reach
the destination, thus no observer has any more work to do.

5.2. Data sets
Regarding the data input part, the realistic-like network graph consists of 5 sites, denoted as
BNL, LBNL, MIT, KISTI, and Prague and all requested files are supposed to be transferred to
the Prague node. The distribution of file origins, i.e. amount of files available at one particular

1 http://choco.sourceforge.net

 32
 34
 36
 38
 40
 42
 44
 46
 48
 50

 0 5 10 15 20 25 30

M
ak

es
pa

n
(u

ni
ts

)

Time (sec)

Heuristics performance for 50 files

FastestLink
MinPath

Peer-2-Peer

 110

 115

 120

 125

 130

 135

 140

 145

 150

 0 5 10 15 20 25 30

M
ak

es
pa

n
(u

ni
ts

)

Time (sec)

Heuristics performance for 150 files

FastestLink
MinPath

Peer-2-Peer

Figure 3. Convergence of makespan during the search process for FastestLink and MinPath.

Solution time Makespan
Files FastestLink MinPath FastestLink MinPath P2P

25 3.862 1.431 14 14 24
50 26.508 27.556 36 32 40
100 8.627 3.176 73 73 80
150 16.52 14.618 111 110 120
200 26.167 14.031 146 146 160

Table 1. Comparison of heuristics with emphasis on time when the best solution was found
and the makespan.

site, is following: 100% of files are available at a central repository at BNL, LBNL holds 60%,
MIT 1%, and KISTI 5% of all files. Implemented demands feeder generates the requested
number of demands and for each demand decides with a probability whether it is available at a
particular site or not, respecting the given distribution.

5.3. Experiments
Our experiments are designed to focus on evaluation of proposed alternatives of the model and
detecting the most suitable combination of search heuristics. Understanding the performance
and limitation of the studied techniques in a simulated realistic environment is a necessary step
prior to further software deployment. All presented experiments were performed on Intel Core2
Duo CPU@1.6GHz with 2GB of RAM, running a Debian GNU Linux operating system.

We compared the performance of the FastestLink and MinPath heuristics and a Peer-2-Peer
model [13] that is currently the most frequently used approach to solve the problem.

Figure 3 shows that convergence of the new MinPath heuristic is faster than the FastestLink
and both heuristics achieve better makespan than the P2P approach. Table 1 shows similar
comparison of heuristics and the P2P model including the time when the best solution was
found for several input instances.

As stated above, in reality the network characteristic is dynamic and fluctuates in time.
Hence, trying to create a plan for 1000 or more files that will take several hours to execute is
needless, as after the time elapsed the computed plan does not have to be valid anymore. Our
intended approach is to work with batches of files, that gives us another benefit of implementing
fair-share mechanism in a multi user environment as well. Particularly, the requests coming

from users are queued and differ in size and priorities of users. The availability to pick demands
from waiting requests into actual batch within reasonably short intervals is very convenient for
achieving fair-shareness. The experiments give us an estimate on the number of files per batch.

6. Schedule execution
In this section we will briefly discuss the applicability of our model and approach in a real-
life network and protocol mechanism and explain the suggested schedule execution in such an
environment. In order to achieve a full link speed between two points in a wide area network (to
fully saturate the bandwidth) one has to understand the basic principles of the TCP/IP protocol
communication. An operation of transferring a single data file itself consists of splitting the data
content into packets of a given size (defined by window scaling parameter of the protocol) and
sending them one-by-one from the source to the destination.

Since the reception of each packet has to be acknowledged by the receiver to achieve both data
integrity and delivery guarantee, the time for the acknowledged packet to travel from source to
destination and back, so called round-trip time (RTT) plays an important role. In a wide area
network the RTT is usually significant, and to overcome such delays, current data transfer tools
use threads to handle several TCP streams in parallel in an attempt to smooth or minimize the
intrinsic delays associated with TCP. Another standard approach in HENP communities is the
execution of several data transfers in parallel (multiple sender nodes per link) to increase the
bandwidth usage. With this last approach, any one instance downtime would be compensated
by other active senders transfers. Both approaches are typically combined for best results and
it has been experimentally shown and taken as a standard assumption that a flat transfer rate
could be achieved across long distance.

The presented model in previous sections assumes a single file transfer at any time on a link
using unary resources. Trying to explicitly model the real network and packets behavior would
hardly lead to any optimization (following all network peculiarities would cause the model to be
barely realizable). The mechanism of how the computed schedule will be executed in the real
network is following:

• every link is supplied by one LinkManager that is responsible for transferring files over the
link if the link is part of their computed transfer path

• as soon as a file becomes available, the corresponding LinkManager initiates another
instance of the transfer, respecting a maximum allowed simultaneous parallel instances

So rather than following the exact schedule, the implementation considers just the plan - the
computed transfer paths, because there is no due-time limitation and executes transfers in a
greedy manner. However, to allow this, one has to be sure that the computed time to complete the
schedule would not differ substantially from the real execution of the transfers. Consequently we
developed the realistic network simulator along the above facts and comparison of the makespans
showed results consistent with each other within a 3% margin, which is negligible. Hence
the experiment confirmed that presented model provides a fairly accurate estimate of the real
makespan.

6.1. Architecture
We will briefly sketch out the proposed architecture of the automated data transfer planning
and executing. The requests from the users are collected and recorded in a relational database.
One convenient approach is to use a web interface backed by a framework such as Django 2

that handles forms and templates and offers plugins to several common relational databases.
The planner, a standalone central component (the brain of the system) selects the batch of

2 http://www.djangoproject.com

Figure 4. The scheme of a proposed architecture.

requested files from the database and computes the plan for it. The selection process depends
on the fair-share objectivity function and allows us to modularly implement and test various fair-
share preferred factors (either from user perspective or from resource usage). The plan (transfer
paths) are recorded back to the database indicating to Link Managers that files are available for
transfers. As proposed above, the link manager supplies a particular link, using the back-end
data mover. As soon as the file appears available at the site and is planned to be transferred via
the link, the data mover instance is executed, respecting the maximum simultaneously allowed
transfers. The status of the transfer is recorded back to the database, allowing users to see the
progress. The workflow is depicted in Fig. 4.

7. Conclusions
In this paper we tackle the complex problem of efficient data movements on the network within a
distributed environment. The problem itself arises from the real-life needs of the running nuclear
physics experiment STAR and its peta-scale requirements for data storage and computational
power as well. We presented the two stage constraint model, coupling path planning and transfer
scheduling phase for data transfers to the single destination, with two alternative approaches
for planning transfer paths inspired by Simonis [7]. We proposed and implemented several
search heuristics for both stages and performed sets of experiments with realistic data input for
evaluating their applicability. Comparison of the results and trade-off between the schedule of a
constraint solver and a Peer-2-Peer simulator indicates that it is promising to continue with the
work, thus bringing improvements over the current techniques to the community. The execution
of the schedule in a real environment and the architecture of the system is proposed. In the
nearest future we want to concentrate on the integration of the solver with real data transfer
back-ends, consequently executing tests in the real environment.

Acknowledgments
The investigations have been partially supported by the IRP AVOZ 10480505, by the Grant
Agency of the Czech Republic under Contract No. 202/07/0079 and 201/07/0205, by the grant
LC07048 of the Ministry of Education of the Czech Republic and by the U.S. Department Of
Energy.

References
[1] J Adams e a 2005 Nuclear Physics A 757 102–183
[2] Ranganathan K and Foster I 2002 vol 0 (Los Alamitos, CA, USA: IEEE Computer Society) pp 352–258 ISSN

1082-8907
[3] Shankar S and DeWitt D J 2007 HPDC ’07: Proceedings of the 16th international symposium on High

performance distributed computing (New York, NY, USA: ACM) pp 127–136 ISBN 978-1-59593-673-8

[4] Sato H, Matsuoka S, Endo T and Maruyama N 2008 GRID (IEEE) pp 250–257
[5] Rahman R M, Barker K and Alhajj R 2007 CCGRID (IEEE Computer Society) pp 171–178
[6] Fisher M L 1981 Management Science 27 1–18
[7] Simonis H 2006 Handbook of Constraint Programming ed Rossi F, van Beek P and Walsh T (Elsevier) chap 25,

pp 875–903
[8] Marriott K and Stuckey P 1998 Programming with Constraints (Cambridge, Massachusetts: MIT Press)
[9] Zerola M, Lauret J, Barták R and Šumbera M 2009 (Submitted to ICAPS 2009)

[10] Pape C L, Couronne P, Vergamini D and Gosselin V 1994 Proceedings of the Thirteenth Workshop of the
U.K. Planning Special Interest Group

[11] Beck J C, Davenport A J, Sitarski E M and Fox M S 1997 Proceedings of the Fourteenth National Conference
on Artificial Intelligence (AAAI-97) (AAAI Press) pp 241–248

[12] Naor M and Wieder U 2003 in Kaashoek and Stoica [13] pp 88–97
[13] Kaashoek M F and Stoica I (eds) 2003 Peer-to-Peer Systems II, Second International Workshop, IPTPS

2003, Berkeley, CA, USA, February 21-22,2003, Revised Papers (Lecture Notes in Computer Science vol
2735) (Springer) ISBN 3-540-40724-3

