Embedding QA embedding + real

Qian Yang(USTC) Zebo Tang(USTC)

Cuts : nHitsFit > 25dca < 3cm0.3 < p/energy < 1.5 $-1 < \eta < 1$

$$N_{events} = 45.197 K MC = J/\psi, P11id(2011)$$

pions: -2. < nSigmaPion < 2.

-it

pions: -2. < nSigmaPion < 2.

p/E

- 1)To get a pure electron sample ,we have two different ways (pT>3 we used Tofmatchflag>0)
- 1.Combine the information from different detectors
 - a) at low pT (pT<3 GeV/c), combine nSigma and TOF to get a relative pure electron sample. And to reject trigger bias, we set a adc cut too.

 $-2.0 < n\sigma_e < 2. \& \& 0.97 < \beta < 1.03$ p_T < 3.0 GeV/c adc<400 BHT2

b) at high pT(pT>3GeV/c), use a very tight dE/dx cut to get a electron-rich sample.

$0. < n\sigma_e < 2.$	$p_{\rm T} > 3.0 {\rm GeV/c}$
adc > 180(290)	BHT0(BHT1)

BHTO

 \sim \sim

2) Getting a pure photonic electron sample from the dielectron invariant mass distribution.

The band may comes from:

- 1) Trigger bias
- 2) To reject those events , electron and positron hits on the same tower, we use these cuts.

 $\Delta \eta > 0.15 \, \| \, \Delta \phi > 0.15$

37

2.5

2.5

3 p/E

3 p/E

2

BHTO

40

3 p/E

3 p/E

2.5

2.5

Conclusion

- the MC data(Jpsi 100) are acceptable, with Jpsi pT from 0-30GeV/c, rapidity for -1.5 to 1.5, and an uniform distribution on phi.
- nHitsFit, Dca, Phi distribution are agree with MC.
- Regarding the p/E distribution, The mean value from MC and Data is the same. The excess at p/E big than 1 coming from the hadron contamination, cause TOF disabled at high pT, as you can see from 1). The excess at p/E less than 1 coming from several particle hitting on the same tower, as you can see from 2). So we conclude the p/E is good.