Determining the Longitudinal Double-Spin Asymmetry (A_{LL}) for π^o and η Production from STAR 2013 Endcap Calorimeter Data

Emily Nelson Undergraduate student at Valparaiso University On Behalf of the STAR Collaboration APS April Meeting

April 16, 2023

Emily Nelson

Supported in part by

Proton Composition

Valence Quarks

- Up, Up, Down - Always present

Gluons

- Carry the strong force - Hold valence quarks together

April 16, 2023

Emily Nelson

Sea quarks

- Virtual particles
- Additional
 - quark-antiquark pairs
- Pop in and out of existence in the proton

Proton Spin Composition

- Proton spin is known to be $\frac{1}{2}\hbar$
 - Quark spin contributes ~30% of proton spin
 - Gluon spin contributions could be substantial Ο
 - There could be additional contributions from Ο quark and gluon orbital angular momenta

April 16, 2023

RHIC Ring

April 16, 2023

Emily Nelson

Relativistic Heavy Ion Collider

Solenoidal Tracker At RHIC

Particle Reconstruction

- π^{o} s (neutral pions) and η s (eta mesons) are two of the many particles produced in the collisions
- π^{o} s and η s rapidly decay into 2 photons
- The energy and position of the photons are measured by the Endcap Electromagnetic Calorimeter (EEMC)
- If the two photons come from a π^{o} or η , the invariant mass (M_{$\gamma\gamma$}) will be equal to the mass of the π^{o} or η particle
 - π° mass = 0.135 GeV/c² (~14% proton mass)
 - \circ η mass = 0.548 GeV/c² (~58% proton mass)

Invariant Mass Formula

$$M_{\gamma\gamma} = (E_1 + E_2) \sqrt{1 - \left(\frac{E_1 - E_2}{E_1 + E_2}\right)^2} \sin\left(\frac{\theta}{2}\right)$$

April 16, 2023

STAR Detector

April 16, 2023

This is one of the goals of STAR's physics program as A_{LL} can be related to the gluon spin contribution to proton spin.
Asymmetry is given by:

$$A_{LL} = \frac{1}{P_B P_Y} \frac{(N^{++} - R_3 N^{+-})}{(N^{++} + R_3 N^{+-})}$$

- where:
 - N = Total number of $\pi^{o}s(\eta s)$ measured for different spin alignments
 - $\circ P_{B} =$ "Blue" beam polarization
 - $\circ P_{V} =$ "Yellow" beam polarization
 - \circ R₃ = Luminosity ratio
 - $\circ~N^{\scriptscriptstyle ++}$ includes both $N^{\scriptscriptstyle ++}$ and $N^{\scriptscriptstyle -}$
 - $\circ~N^{+-}$ includes both N^{+-} and N^{-+}

April 16, 2023

Fills and Runs

Fill:

- A number of bunches of protons that travel through the accelerator rings
- When the polarization and number of protons become lower than a certain point, the current fill is dumped and a new fill is started
- Each fill lasts roughly 6 hours

Run:

- Subset of a fill that contains a certain number of proton-proton collisions
- Breaks data into manageable pieces
- Many runs make up a fill (usually from 2–20, averaging around 12)
- Each run is comprised of roughly 30 minutes of data-taking within a fill

Two Photon Invariant Mass Fitting

Signal (π^o or η) is fit using a skewed Gaussian function (red line)

$$f(x) = p0 \cdot exp\left(-0.5\left(\frac{x-p1}{p2(1+p3(x-p1))}\right)^2\right)$$

• Background of the graph is fit using the Chebyshev polynomial (blue line)

 $B = p9 \cdot (p4 \cdot T_o + p5 \cdot T_1 + p6 \cdot T_2 + p7 \cdot T_3 + p8 \cdot T_4)$

• The black line is the sum of the two functions and represents the fit to the data

April 16, 2023

Emily Nelson

9

Quality Assurance (QA)

- Done first at the run level and then at the fill level
- QA on the runs ensures quality data
 - Gather all runs from all fills (~ 12 runs per fill)
 - Look at values related to $\pi^{o}(\eta)$ mass, segments in the detector hit, and the signal to background ratio
 - \circ Remove any outlier runs 4 σ away from the mean of that value for all runs
- QA on the fills takes place after run QA with remaining data
 - Remove fills that are "bad" or inconsistent with the data set
 - Fit the measured two-photon invariant mass spectrum with the sum of two functions: a $\pi^{o}(\eta)$ signal function (represented by a skewed gaussian) plus a background function (5th order Chebyshev polynomial).

Fitted Invariant Mass Spectrum • Plot important information such as $\pi^{o}(\eta)$ mass, $\pi^{o}(\eta)$ width, number of $\pi^{o}s(\eta s)$,

- etc.
 - Look for deviations from the norm
 - The plots show the mean of the signal portion of the two photon invariant mass Ο vs fill number

Emily Nelson

April 16, 2023

Signal Fraction

- The signal fraction is the number of $\pi^{o}s(\eta s)$ within 2σ of the $\pi^{o}(\eta)$ peak divided by the total number of events in this region.
- π^{o} candidates that are within 2σ of the mean (gold lines)
- The signal fraction is used as an analysis tool to ensure a good ratio of the signal to the background noise

Signal Fraction vs. Fill Number

• The signal fraction is one of the parameters used to remove "bad" fills

observed signal fraction is about 0.75

Emily Nelson

April 16, 2023

observed signal fraction is about 0.20

Summary

• Run level QA has been completed for the 2013 data set • For both π^{o} s and η s

• Fill level QA in progress

- Total of 121 fills
- ~30% fills analyzed for $\pi^{o}s$
- $\circ \sim 25\%$ fills analyzed for ns
- Next steps:
 - Finish fill level QA for π^{o} s and η s
 - Begin asymmetry (A₁₁) analysis for π^{o} s and η s to constrain gluon contribution to proton spin
 - To be completed in the summer of 2023

Acknowledgements

Dr. Stanislaus, Dr. Gibson-Even, Dr. Grosnick, Dr. Koetke, and Mr. Nord

Valparaiso University Physics and Astronomy Department

April 16, 2023

Two Photon Invariant Mass Fitting

$$f(x) = a \cdot exp\left(-0.5\left(\frac{x-b}{c(1+d(x-b))}\right)^2\right)$$

$$B = c_0 T_0 + c_1 T_1 + c_2 T_2 + c_3 T_3 + c_4 T_4$$

- po = related to the height (a)
- p_1 = related to the mass of pio (b)
- $p_2 = related to width of graph (sigma) (c)$
- $p_3 =$ skewing parameter (d)

$$p_4 = c_0$$

$$p_5 = c_1$$

$$p6 = c2$$

$$p_7 = c_3$$

$$p8 = c4$$

p9 = moves the chebyshev polynomial (blue line) up and down to better match the function

April 16, 2023

Eta Signal Fraction

April 16, 2023

_eta_pT1
9788
0.7864
0.3168
37.96 / 39
67.99 ±4.93
0.5778 ±0.0054
0.05042 ±0.00614
0.3525 ±0.0262
62e+04 ±4.881e+03
04e+04 ±3.370e+03
02e+05 ±1.494e+03
48e+04 ±4.418e+02
-5474 ±153.7
0.00103 ±0.00007
1.4
n GeV/c^2