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Synopsis

The production and subsequent survival of jets has been shown to be sensitive to the nature of

the medium produced in high energy heavy ion collisions. This work has studied the particle

composition of jets by determining the ratios p±/π± and K±/π± in Au + Au and d + Au collisions

at
√

sNN = 200 GeV measured by the STAR experiment at RHIC.

Jets were found by measuring the angular azimuthal correlation between particles at high trans-

verse momentum. Jets were then identified by their back-to-back correlation. Differences in the

jet hadrons ratios for the different colliding systems could indicate that the jet spectra have been

modified by the presence of a deconfined medium, wherein parton degrees of freedom are manifest

over nuclear rather than nucleonic scales. A technique was developed to identify charged particles

using their specific ionisation measured in the STAR Time Projection Chamber (TPC).

Previous studies have shown strong attenuation of hadronic jets in central Au + Au at RHIC. The

requirement of a high transverse momentum trigger biases the measurement of jets to those emitted

close to the surface of the medium when using hadron triggers. This thesis contains one of the first

implementations of using direct photons to tag jets in heavy ion collisions. An attempt was made

to extract a trigger sample rich in direct photons from neutral triggers.

The particle composition was studied for both the near side jet (particles associated along with a

neutral trigger particle) and the away side jet (particles emitted close to π with respect to the trig-

ger). The hadron ratios were calculated from the jet yields as a function of transverse momentum

in each collision system. Although the away side yield is suppressed in central Au + Au as seen

in previous studies, there is no evidence that the relative particle yields are changed. No medium

modification of the relative particles yields suggests that the fragmentation process is unchanged

by the energy loss experienced in the medium. This implies that the high p/π ratio seen in earlier

studies of central Au + Au is caused by the underlying event and not by jet modification.



The hadron ratios for the three systems were found to be consistent with simulated p + p events

generated using the Pythia Monte Carlo event generator. This reinforces the conclusion that the

fragmentation process is unchanged by interactions with the medium.
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Author’s Contribution

In 2006, when the electromagnetic calorimeter was fully installed, the author was assigned the task

of studying two-particle correlations in Au + Au collisions at
√

sNN = 200 GeV using calorimeter

triggers. After developing the correlation techniques using the 2004 Au + Au data, the techniques

were applied to the 2007 Au + Au and 2008 d + Au data.

In addition to the correlations, an analysis was developed to identify the charged hadron spectra

using the specific ionisation measured in the STAR TPC in the relativistic rise region of the Bethe-

Bloch formula. The analysis used calibrated Bichsel function (modified Bethe-Bloch calculation)

predictions for charged kaons, charged pions, electrons and protons to identify particles.

To calibrate the TPC ionisation, neutral Λ particles were reconstructed in order to produce high

purity samples of protons taken from the baryon daughter of the Λ decay. The cuts for identifying

Λ particles were developed by colleagues studying strange particles directly.

Back-to-back azimuthal correlations between high transverse momentum hadrons were used to

identify jets. The charged tracks that were deemed to be part of the jet were then identified using

the technique developed using the energy loss data. From the identified jet spectra, the charged

hadron ratios p/π and k/π could be determined. The determined hadron ratios were compared

with simulated p + p data.

As a member of the STAR collaboration, the author contributed to experimental operations. A

continuous three week period was spent in 2007, where the author was part of the detector operat-

ing team. The task of a detector operator included monitoring the detectors, starting and shutting

down the detectors, initialising data collection and responding to detector faults.

The author also contributed to the STAR collaboration through weekly phone conferences where

analyses were discussed. The author participated in quarterly collaboration meeting and analysis

meeting. The author presented a preliminary version of these results during the Hot Quarks 2008

conference at Estes Park, Colorado, USA.
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Chapter 1

INTRODUCTION

The strong force continues to be a challenging and fascinating phenomenon to study. Unlike the

weak or electromagnetic forces, the coupling constant for the strong force is large, hence strong

interactions cannot be calculated using peturbative theories as the strong force potential diverges

at large distances. Furthermore, strongly interacting particles or partons have not been observed

individually as they are confined within hadrons. The inability to observe partons in isolation limits

any experimental investigation into how they behave.

In 1973, Gross and Wilczek proposed that non-Abelian gauge theories have free field theory

asymptotic behaviour [1]. This discovery suggested that above a critical density, greater than that

found in the nucleus, partons would become deconfined from their hadronic states. High energy

nucleus-nucleus collisions provide a unique opportunity to study this novel state of matter.

1.1 Quantum Chromodynamics

The theory governing the strong force is Quantum Chromodynamics (QCD). The strong force

binds together quarks to form colour neutral hadrons. Quarks carry one of six possible colour

charges, analogous of electric charge, that are symbolised as red, blue, green and their correspond-

ing anti-colours. By using colours it can be easily seen how combining quarks of different colour

charge can lead to colour neutral hadrons.
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Hadrons are either mesons, a colour-anticolour combination of a quark-antiquark, or baryons,

three quarks, one of each colour. These are the two simplest colour neutral combinations that are

possible.

1.1.1 Gauge theory of the strong interaction

The behaviour of interacting particles can be described by specific quantum field theories known

as gauge theories. The strong force is one of the gauge theories tested by experiment. In gauge

theories, the interactions between matter particles is generated by the exchange of gauge bosons,

or force particles. QCD has been established as a gauge invariant theory based on a group of

symmetries. Local gauge invariance implies that the QCD gauge boson is massless since a mass

term in the QCD Lagrangian would render QCD not invariant under local gauge transformations

[2].

The gauge boson in QCD is the gluon and it is responsible for mediating the strong force. Un-

like the photon, the gauge boson of the electromagnetic force, that does not carry electromagnetic

charge, the gluons do carry colour charge. Colour charge is conserved by the strong interac-

tion. Figure 1.1 shows how a strong interaction between two quarks can conserve colour using

a coloured gluon. The inclusion of gluons in the theory of hadons led to the development of the

quark parton model [3].

Experimental evidence for gluons came from e+ + e- collisions. The hadrons produced by the

collision were found in some events to be localised into three streams of hadrons, jets, violating

any gluon free parton model where e+e−→ qq̄→ qq̄g [4].

As colour charge exhibits a SU(3) symmetry, there can be eight linear combinations of colour that

correspond to coloured gluons. Coloured gluons are able to interact with one another making QCD

an example of a non-abelian Yang-Mills theory [5]. It is this property of gluons that complicates

the long range component of the strong potential.
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Figure 1.1: A Feynman diagram illustrating a strong interaction where colour is exchanged via a
gluon. The quarks are represented by the arrowed lines and the gluon is represented by the looped
line

1.2 The Strong Potential

A potential, which governs the spatial dimensions of hadrons, is created by strongly interacting

quarks. If a quark anti-quark pair of a meson is considered, the resulting potential can be described

by equation 1.1:

V (r) =−4αs(r)
3r

+ kr (1.1)

where r is the quark spacing, αs is the strong coupling constant and k is a constant that describes

the long range interactions. At short distances, strong interactions can be described by the ex-

change of a single gluon with the resulting potential exhibiting a 1
r dependence. However, at larger

separations, the strong potential takes on a different form. Increasing the separation increases the

strength of the force binding the quarks together. Gluons carry colour and consequently they self

interact. At large separations the gluon field collapses into a flux tube between the two quarks. The

resulting potential follows a linear dependence with r. This long distance behaviour of the strong

force confines quarks and gluons to hadrons and accounts for why free colour charges have not

been observed in experiment.
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1.2.1 Confinement and the running coupling constant

Confinement is the phenomenon that has prevented individual quarks from being isolated. Naively

speaking, equation 1.1 suggests that an infinite quantity of energy is required to remove a quark

from a hadron. Yet it is evidently possible to create particles from high energy collisions question-

ing the notion that quarks are forever bound to a specific hadron. As the quark separation increases,

at some threshold, the creation of more particles is energetically more favourable than maintaining

the original hadron structure.

A possible second conclusion that could be taken from equation (1.1) is that as r→ 0 the repulsive

force due to the first term on the right hand side becomes infinite. However αs is known from

experiment to change as a function of the separation r and is described as a running coupling

constant [6]. Working at leading order αs(Q2) can be described by equation 1.2.

αs(Q2) =
αs(Q2

0)

1+β0αs(Q2
0)ln(Q

2/Q2
0)

(1.2)

In equation 1.2, β0 =
11CA−4TF n f

12π
where CA = 3 and TF = 1

2 are the conversion factors of a gluon

splitting into two gluons or two quarks respectively and n f is the number of quark flavours used

in the calculation. Using the value of a measured strong coupling constant at a known Q2 scale,

αs(Q2
0), it is possible to solve αs(Q2) at any higher value of Q2 where Q2 is greater than Q2

0 and

perturbative methods are valid.

The critical observation taken from this equation is that as Q2 → ∞, αs → 0. Considering that

Q2 ∝
1
r2 , the strong interaction asymptotically decreases as r→ 0. Experimental studies at LEP

have indeed shown that αs decreases with increasing Q2 [7].

1.3 Quark-Gluon Plasma

Given that at high Q2 the strong coupling constant decreases asymptotically, as described in section

1.2.1, one could hypothesize that the strong interaction would become negligible at very small
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separations. A vanishing coupling constant would allow quarks and gluons to become deconfined,

meaning that hadrons would cease to exist. In other words, a new state of nuclear matter, with free

quarks and gluons demonstrating colour degrees of freedom, could be observed. In 1975, Collins

and Perry realised that asymptotic freedom implied that quarks could become deconfined in the

centre of stellar objects such as neutron stars, black holes or the early universe [8]. This new state

of matter is commonly referred to as a Quark-Gluon Plasma (QGP). For asymptotic freedom to

occur the hadronic matter must be subject to extreme pressures that compress the matter beyond a

critical energy density. The critical conditions may be created in heavy ion collisions if the critical

energy density can be exceeded.

1.3.1 Debye Screening

In a sufficiently high energy nuclear collision, matter is compressed beyond a density where hadron

boundaries overlap. The increased density of colour charges perturbs the potential within each

hadron. The long range component of the strong potential within the hadron is screened by the

presence of extra colour charge. This screening effect results in the deconfinement of strongly

interacting particles that can now propagate through the critically dense matter. The medium would

transform from a colour insulating material (normal nuclear matter) to a colour conducting material

similar to the Mott transition where insulators transform to conductors when subjected to high

external pressure [9].

The potential between nuclei and outer lying electron orbitals is rewritten to include a Debye

screening effect. Equation 1.3 illustrates how the density of charge perturbs the effective potential

experienced by electrons in the outlying orbitals where rD is the Debye screening length, kB is the

Boltzmann constant and ρ is the density of electrons. The QCD Debye screened potential shown in

equation 1.4 is very similar to equation 1.3 [10]. The primary consideration is that the linear term

in equation 1.1 vanishes when the quark separation is much less than the radius of a hadron, due

to the overlapping hadronic wave functions, leaving only the Coulomb-like potential. The onset

of Debye screening allows deconfinement, and thus QGP formation, to occur at an energy density

that may be achieved in high energy nuclear collisions.
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QED
φ(r,T ) =

Q
4πε0r

e
−r

rQED
D (T ) (1.3)

rQED
D =

√
ε0kBT
ρe2

QCD
φ(r,T ) =

1
9T 2 αs(T )2e

−r
rQCD
D (T )rT (1.4)

rQCD
D =

1√
4παs(T )T

1.3.2 Lattice QCD

Lattice QCD is a non-perturbative method of performing QCD calculations. The lattice grid con-

sists of quarks and gluons, where the quarks are represented by the lattice points and the gluons

are the links between each point. The spacing of the lattice points dictates the momentum for the

lattice as the momentum is of the order 1/a, where a is the lattice spacing.

Calculations are computationally intensive and are generally limited to small lattices. Calculations

performed on different size lattices gives an indication of the sensitivity of the lattice size.

By performing calculations at several lattice spacings, extrapolation to the continuum of lattice

spacings, by letting a→ 0, can be performed to determine physical properties that are a function

of a. Lattice QCD presents a useful tool for investigating the properties of the QGP.

Lattice QCD calculations have provided estimates of the critical parameters necessary for nu-

clear matter to transform into a QGP. The critical temperature Tc for the phase transition has

been calculated using 2 and 3 quark flavour senarios and has been determined to be in the region

Tc ∼ 150−175 MeV. The critical energy density εc predicted by lattice QCD is ∼ 0.7 GeV f m−3

[11].
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Figure 1.2: Energy density lattice QCD calculations as a function of the critical temperature for
the formation of a QGP. The three coloured arrows indicate the relativistic Stefan-Boltzmann pre-
dictions. Also shown are the predicted temperatures for three heavy ion experiments [13]

What can be seen from the lattice calculations in figure 1.2 is that as the temperature reaches Tc

there is a sharp increase in the energy density indicating an increase in the number of degrees of

freedom. At the asymptotic limit, αs→ 0 where the strong force is negligible, quarks and gluons

can be described as point-like non interacting particles much like in an ideal gas. In this case

the relativistic Stefan-Boltzmann law can be used to describe how the pressure pSB of the matter

relates to the temperature T [12].

pSB

T 4 =

[
2(N2

c −1)+2NcN f
7
4

]
π2

90
(1.5)

The two terms in the bracket of equation 1.5 sum the contribution of the gluons and quarks where

Nc is the number of colours and N f is the number of quark flavours. From equation 1.5, the energy

density, ε , for a relativistic gas can be computed using the relationship ε = 3pSB.

When comparing the results for a ideal relativistic gas at Tc to the results obtained from lattice

QCD, figure 1.2 shows there is clearly a deficit in ε from the lattice QCD calculations. This deficit

was originally dismissed as a limitation of lattice QCD but is now believed to indicate that the
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partons are not asymptotically free and continue to interact strongly. The sharp increase in ε ,

after the critical temperature, remains indicative of a phase change from a hadron gas to a new

state, possibly a QGP, as this sharp increase would be due to the liberation of new degrees of

freedom. The onset of this new phase is likely to be the result of colour screening as described

in section 1.3.1. There remains the possibility that at temperatures much greater than Tc, perhaps

those obtainable at the LHC, asymptotic freedom could be established before then cooling to a

state where screening allows for deconfinement and then finally freezing out to a hadron gas.

1.4 Relativistic Heavy Ion Collisions

A series of images taken from a simulation of a relativistic heavy ion collision, illustrating the var-

ious stages of the temporal evolution, is depicted in figure 1.3. The incoming ions are Lorentz con-

tracted in the centre of mass frame forming two disks. Hard scattering (high Q2) elastic collisions

can occur in the initial interaction. Soft (low Q2) interactions also occur leaving a dense medium

of gluons in the wake of the collision. These gluons can fuse or fragment to qq̄ pairs producing

further quarks and gluons. If the critical energy density is achieved, hadronisation is delayed and a

deconfined phase will form. A QGP will have been achieved once the dense medium has reached

thermal equilibrium. The QGP will expand and cool due to internal pressure and will eventually

form a hadron gas. The time scales required for the evolution of the collision are calculated using

hydrodynamic models that rely on the system reaching thermal equilibrium [14]. Current studies

of the medium produced in Au + Au collisions at a centre of mass energy per nucleon (
√

sNN)

= 200 GeV at RHIC suggest that the matter produced is thermally equilibrated very early in the

evolution as will be discussed in chapter 2. Unfortunately the QGP can not be observed directly

by experiment. The detectors used in heavy ion experiments detect the ∼1000 particles that are

produced after the expansion. The goal of experiments is to search for experimental signatures of

quark deconfinement.
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Figure 1.3: Simulation of a relativistic heavy ion collision showing the various stages of the tem-
poral evolution as seen from the centre of mass frame [15]

1.4.1 Heavy ion experiments

Heavy ion experiments have been conducted since the 1980s. The Bevelac accelerator at the

Lawrence Berkley National Laboratory was the first heavy ion facility, colliding a beam of ions

with a fixed target that could achieve a
√

sNN of 2.5 GeV. The Alternating Gradient Synchrotron

constructed at Brookhaven National Laboratory in the late 1980s was another fixed target facility

obtaining a
√

sNN of 4.9 GeV. The SPS at CERN could reach a
√

sNN of 17 GeV. RHIC, the

first purpose built collider designed to investigate nuclear matter at high temperature and density

commissioned at Brookhaven National Laboratory in 1999, has a
√

sNN of 200 GeV. RHIC consists

of two concentric rings that collide two ion beams, thus enabling a much larger centre of mass

energy to be achieved than fixed target experiments.

Relativistic heavy ion collisions, created in modern particles accelerators, are believed to be ca-

pable of reaching the critical temperature, estimated by lattice QCD, for the onset of a QGP

phase. Two accelerator facilities have calculated a temperature above this critical temperature.

They are the CERN Super Proton Synchrotron and the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory.

The QCD phase diagram shown in figure 1.4 illustrates the phase boundary between hadrons and a

QGP. The red labels indicate the chemical freeze-out temperatures of subsequent collider facilities.

As the chemical freeze-out temperature at RHIC has been determined to be approximately equal

to the critical temperature, the initial temperature after the collision must have been higher, which

suggests that a QGP phase has been created.
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Figure 1.4: The QCD phase diagram showing the boundary between a hadronic state and a QGP
state of matter. The chemical freeze-out temperatures of different experiments are indicated by the
red labels.

The CERN Large Hadron Collider is expected to produce collisions temperatures in excess of those

currently being produced at RHIC. Figure 1.2 shows where the calculated temperatures of these

three heavy ion accelerators lie on the lattice QCD Tc calculations. Judging by these calculations,

the critical temperature has indeed been surpassed. However verifying that a temperature above Tc

has been reached would not be sufficient evidence to prove that deconfinement has been achieved.

There have been four experiments running during the RHIC operating period yet only the STAR

experiment shall be discussed in detail as the research entailed in the following chapters was

conducted using data taken by the STAR experiment. A summary of the results taken from the

first five years of RHIC operations has been published by each experiment: BRAHMS, PHENIX,

PHOBOS, and STAR [16, 17, 18, 19]. A detailed description of the RHIC facility and the STAR

experiment will follow in chapter 4.
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1.5 Thesis Outline

The matter created in heavy ion collisions at RHIC can be studied by analysing jets created during

the initial collision. Jets are streams of correlated particles that are created from the fragmentation

of high momentum partons, which have been scattered through large angles during the initial

collision. A high momentum parton will traverse the medium created in the collision and will act

as a probe whose information can be detected once it has fragmented into a jet.

Jet modification, as a consequence of high transverse momentum suppression in Au +Au collisions,

is one of the key results taken from RHIC and will be discussed in detail in section 2.1. The present

analysis will investigate jet modification by searching for a modification signature in the spectra

of particles associated with jets. By distinguishing jet cone hadrons from hadrons produced in the

underlying event, it will be possible to determine whether modification of the hadronic composition

of jets has occurred in Au + Au collisions.

Four different collision systems will be compared to study jet modification in relation to system

size. Identified spectra shall be obtained for jets found via two particle correlations from d+Au,

central and peripheral Au+Au and simulated Monte Carlo p + p collisions at
√

sNN = 200 GeV.

This thesis comprises of the following chapters. Chapter 2 will summarise the key results from

RHIC that have an impact on the current analysis. Chapter 3 will discuss the theory of jet phenom-

ena focusing on jet production and jet modification. Hadron production via fragmentation shall

be discussed along with possible modification mechanisms to in vacuum hadron production by the

presence of a deconfined medium. Chapter 4 will introduce the RHIC facility and the STAR ex-

periment. There will be a comprehensive review of the detectors key to this analysis. Furthermore,

the analytical methods for two particle correlations and hadron identification shall be discussed.

Chapter 5 shall provide a precise account of the analytical procedure used to extract the identified

spectra from jets. In chapter 6, the results from comparing the hadron composition of jets from

four systems will be discussed and the limitations of the methods used shall be scrutinised. Fi-

nally, an outlook is proposed that considers the potential for further studies on jets with a look to

the capabilities of future heavy ion experiments.
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Chapter 2

KEY RESULTS FROM RHIC

Before continuing with the key results, a few key parameters must first be defined. The first param-

eter is the particle momentum perpendicular to the beam axis, which is the transverse momentum

and will be denoted as pT . The second parameter is rapidity, y, and is calculated as shown in

equation 2.1 where E is the energy of the particle and pL is the particle’s longitudinal momentum.

y =
1
2

ln
(

E + pL

E− pL

)
(2.1)

Pseudorapidity, η , is often used in place of rapidity in the limit where the particle is traveling close

to the speed of light or in the approximation that the mass is negligible. η is calculated as shown

in equation 2.2 using the particle momentum instead of the energy. Rapidity is a useful tool for

measuring the angle of a particle relative to the beam axis.

η =
1
2

ln
(
|p|+ pL

|p|− pL

)
(2.2)

2.1 Suppression of High Transverse Momentum Hadrons

The suppression of high pT hadrons, via hard scattering collisions with partons in the medium,

was one of the earliest predicted signatures of a QGP [20]. To quantitatively observe high pT
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suppression, a p + p reference spectra at the same centre of mass energy must be taken to compare

with the Au + Au spectra.

In heavy ion collisions there are far more particles produced than in a p + p collisions therefore a

suitable scale is required to accurately account for the enhanced particle production due to larger

colliding bodies. In the high pT region, the number of hadrons scales approximately with the

number of nucleon-nucleon binary collisions (Nbin) [21]. Thus a nuclear modification factor (RAA)

is formalised in equation 2.3 where NAA is the hadron yield from nucleus + nucleus collisions, y is

the rapidity or pseudorapidity and N pp is the hadron yield from proton + proton collisions, which

has been scaled by the number of binary collisions.

Within the high pT region, Au + Au yields should scale to unity with p + p yields in the absence

of phenomena unique to heavy ion collisions. At pT less than ≈ 1 GeV/c binary scaling is not an

applicable scaling parameter as soft scattering is the dominant hadron production channel. A better

scaling parameter for soft scattering production is the number of participating nucleons (Npart) in

the collision.

RAA(pT ,y) =
d2NAA/d pT dy

〈Nbin〉d2N pp/d pT dy
(2.3)

The suppression of high pT hadrons is shown in figure 2.1. A suppression is shown as the RAA de-

creases from unity with impact parameter suggesting that a final state interaction with the medium

is the cause of the suppression. However, the initial state of the colliding nuclei may still affect

the final state observables. The parton distribution function (PDF) describes how the momentum

is distributed amongst the partons within a hadron or nucleus. Gluon saturation at low x, where

x is the fraction of the hadron longitudinal momentum (pL) carried by the parton, is a possible

candidate for the suppression of high momentum hadrons when comparing Au + Au and p + p.

The possible gluon saturation effects can be investigated using a deuterium probe. A suppression

of high pT hadrons in d + Au collisions would strongly indicate that the suppression is due to

initial state effects as no QGP will form in these collisions. The d + Au analysis indicated an

enhancement of high pT hadrons when compared to p + p data [22]. The enhancement can be
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Figure 2.1: RAA for various pT bins taken from STAR Au + Au collisions data at
√

sNN = 130 GeV
[24]. High pT suppression is shown to increase with centrality, where 0-5% reprsents the most
central collisions and 60-80% represents the most peripheral bins.

attributed to the Cronin effect, where the multiple scattering of colliding partons increases the

momentum that is transferred into the transverse plane [23]. The d + Au result indicated that the

suppression of high pT hadrons is a final state effect, which supports the hypothesis that a QGP has

been formed at RHIC. At low pT , where soft scattering production dominates the particle spectra,

an enhancement is observed in figure 2.1 above participant scaling. The enhancement indicates

that the Cronin effect is also present for Au + Au. Intuitively, the suppression at high pT must

therefore be larger than the observed factor of five suppression.

A further study to determine the initial/final state effects on high pT suppression computed RAA for

direct photons [25]. Photons do not interact strongly and therefore would be largely unperturbed

by the presence of a strongly interacting medium such as a QGP. The analysis carried out by

the PHENIX collaboration clearly illustrated that the direct photon yield scales with the number of

nucleon-nucleon collisions across all impact parameters. In tandem to the analysis on direct photon

production, the hadron yields for the η and π0 neutral mesons were calculated. Figure 2.2 shows
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Figure 2.2: PHENIX data showing the RAA for η , π0 and direct γ [26]. The neutral hadrons exhibit
similar suppression in central Au + Au as charged hadrons however the photons show no indication
of suppression.

how neutral mesons exhibited a similar suppression profile to the charged particles reinforcing the

conclusion that the final state suppression is caused by a strongly interacting medium [26].

2.1.1 Suppression of dijets

When a high Q2 collision between two partons occurs the partons are often scattered through large

angles and propagate back-to-back in the transverse plane. Yet, due to confinement, they cannot

exist as free partons. Therefore the two partons fragment into further partons that hadronise to

form a cone of new hadrons or a jet. The fragmentation process liberates the scattered parton from

the parent hadron, which incidentally will also fragment because the hadron remnant now contains

net colour. The hard scattering process that creates dijets occurs during the initial stages of the

collision. When the temporal and spatial evolution of the collision are considered, a hard scattered

parton would still be within the medium when the QGP state exists.

The QGP formation time Tf can be loosely considered to be less than the hadron formation time (1

fm/c) as quark and gluon creation is an intermediate step to hadronisation. The life time of the QGP

phase is dependent on the initial temperature and the rate of expansion and has been calculated for
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RHIC energies to be between 3-4 fm/c [27]. If it is assumed that a static QGP has a radius equal

to rAu, which is roughly 7 fm, a high pt parton created at T0 at the centre of the collision with

a trajectory in the transverse plane would encounter QGP matter. Consequently, dijets provide a

useful probe of the QGP that had not been available at heavy ion experiments prior to RHIC.

Jet reconstruction is not possible in heavy ion collisions at STAR using traditional jet finding

algorithms from hadron-hadron or lepton-hadron collisions due to the large particle multiplicity

[28]. The hadrons that make up the jet cone are indistinguishable from the hadrons that form the

underlying event. Two particle correlations that consider the angular distribution of particles with

respect to the highest pT particle in the event have been successfully used to indirectly measure

a jet signal averaged over many events (∼ 106 events). Conservation of transverse momentum

requires dijets to appear back-to-back in the transverse plane with respect to the beam axis.

In p + p collisions dijets are created via the hard scattering of two impacting high momentum par-

tons that then fragment in the vacuum. In the context of a Au + Au collision, the high momentum

scattered parton strongly interacts with the free colour charges of the QGP via scattering or radi-

ating gluons much like an electron radiates photons when in the presence of an electromagnetic

plasma via Bremsstrahlung [29]. If the jets have differing path lengths in the QGP, the jet with the

longer path is likely to be more suppressed than the other. The trigger selection process for two

particle correlations studies strongly favours the jet with the shortest path length.

The STAR collaboration reported a disappearance of back-to-back jets in central Au + Au collisions

at
√

sNN = 200 GeV [30]. Figure 2.3(a) shows the result of a two particle correlation where ∆φ is

the angular distribution of particles relative to a trigger particle. The trigger particle is usually the

highest momentum particle in the event which is the best candidate for the leading particle of a jet.

The second jet, located at ∆φ = π , vanishes, within a certain pT range, in the most central events

and reemerges in the most peripheral events. Figure 2.3(b) displays the ratio of the corrected Au

+ Au jet yield to the p + p jet yield, IAA, where the jet yield is the integral of the peaks in figure

2.3(a) above the flow background. IAA is shown to decrease with Npart for the away side jet. There

is a suggestion that the suppression observed in the lowest Npart bin is due to initial state effects

implying that although perhaps not the dominant mechanism, initial state conditions contribute to
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Figure 2.3: Suppression of back-to-back dijet correlation in Au + Au collisions data at
√

sNN =
200 GeV [30]. Figure (a) compares the Au + Au correlation (black circles) to the p + p correlation
(white circles) showing a suppression of a jet signal at |∆φ | = π . Figure (b) compares the IAA
for near side jet (|∆φ | < 0.75) and away side jet (|∆φ | < 2.24) illustrating that the suppression is
manifest in the away side jet.

the overall high pT suppression observed in Au + Au collisions.

2.1.2 Observation of dijets

The disappearance of the dijet signal was found only within a certain pT range. When higher pT

hadrons are considered, it was found that the dijet signal reemerges albeit suppressed in central

Au + Au [31]. The two particle correlations for d + Au, mid-central Au + Au, and central Au +

Au are compared in figure 2.4. The combinatoric background in central Au + Au reduces as the

associated pT increases due to a sharply decreasing contribution to the correlation from thermal

hadrons. The return of the dijet signal can be attributed to both high energy jets that have not been

fully suppressed and tangential jets that have had little or no interaction with the medium.

The reemergence of the away side jet at high pT has strong implications for the current analysis.

If the away side jet was completely suppressed at all associated pT ranges, a jet yield could not be

determined for the away side jet and therefore no analysis of the hadron spectra, associated with

the away side jet ,could be performed.

17



2.1. SUPPRESSION OF HIGH TRANSVERSE MOMENTUM HADRONS

Figure 2.4: Azimuthal correlations of high pT charged hadrons for d + Au, mid-central Au +
Au, and central Au + Au[31]. The trigger pT range was 8-15 GeV/c and the associated pT range
increases from top to bottom from 3-4 GeV/c to greater than 6 GeV/c
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2.1.3 Collective flow

The equation of state of the hadronic matter created in heavy ion collisions at RHIC can be accessed

by analysing the medium’s collective behaviour. Some of the most compelling evidence for the

creation of a QGP have been revealed from studying the collective behaviour of the medium. The

crossing paths of the colliding beams of nuclei lead to a range in the impact parameter, b, calculated

at RHIC. Physically, a range in b leads not only to a range in the size of the medium created but

also in the eccentricity of the overlap region of the colliding nuclei.

The eccentricity of the collision creates differing pressure gradients parallel and perpendicular to

the reaction plane resulting in an asymmetry in the transverse flow of the medium [32]. Figure 2.5

depicts a collision at finite impact parameter and shows how the nuclei overlap region creates an

anisotropy of pressure parallel and perpendicular to the reaction plane (the plane between the two

centres of mass). The anisotropy produces larger pressure gradients in the reaction plane, which

boosts the medium expansion parallel to the reaction plane. This boosting of the medium has

been observed as a Cos2φ modulation of the azimuthal distribution of hadrons. It has been argued

that the anisotropic transverse flow or elliptic flow, observed in non-central collisions, develops

in the early stages of the collision if early thermalisation is achieved indicating an ideal hydrody-

namic system [33]. The observation of flow is evidence that the strong coupling constant is finite,

hence a strongly coupled QGP. Expansion due to elliptic flow would only persist until the pressure

anisotropy had been balanced, which indicates that elliptic flow is only a short lived process. The

fact that elliptic flow has been observed indicates that the medium does reach thermalisation early

in the collisions evolution. Measuring elliptic flow can provide information about the physics of

the early evolution of the collision when the QGP state is expected to form. The elliptic flow rep-

resents a background in the two particle correlation structure. The relative size of the back-to-back

correlation due to flow is shown by the solid lines in figure 2.3(a).

The hadron distribution in the transverse plane should exhibit a modulation relative to the reaction

plane if elliptic flow has developed. The modulation can be measured by the Fourier expansion

of the distribution of particles in the transverse plane [35]. The hadron distribution, as a function

of rapidity and pT , has been modified in equation 2.4 to account for this modulation where φ
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Figure 2.5: A cross section of a peripheral heavy ion collision showing the anisotropy of pressure
gradients with respect to the reaction plane [34]. The contours show lines of equal energy density.

describes the azimuthal angle relative to the reaction plane, v2 is the amplitude of the modulation,

and i indicates the particle species.

dNi

pT d pT dydφ
=

1
2π

d2Ni

pT d pT dy
(1+2vi

2(pT )cos(2φ)+ ...) (2.4)

The coefficient of the second order term, v2, of equation 2.4 is expected to dominate and can be

extracted via fits to the transverse distributions of hadrons. The STAR experiment first published

results on the v2 of elliptic flow from charged particle spectra in Au + Au collisions at
√

sNN =

130 GeV. The study showed how, for near central collisions, the elliptic flow was comparable to

ideal hydrodynamic models suggesting that early thermalisation had been achieved. There is also

evidence of less complete thermalisation in peripheral collisions where hydrodynamic models over

estimate the flow [36].

The v2 of identified hadrons, in Au + Au collisions at
√

sNN = 200 GeV, has been studied at

RHIC [37, 38]. At pT < 2 GeV/c, figure 2.6(a) reveals that v2 conforms to the particle mass

dependence expected from hydrodynamics where the lighter hadrons exhibit larger v2. This would

imply that the QGP behaves like a perfect fluid with a vanishing mean free path and a short time
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kinetic freeze-out. Above this limit, the v2 of hadrons no longer scales with mass but appears

to split into separate baryon and meson trends. The splitting of baryon and meson trends can

be explained by plotting v2 against pT where both values have been scaled by the number of

constituent quarks [37]. Figure 2.6(b) shows how the v2 and pT of hadrons scales with the number

of constituent quarks. This constituent quark scaling suggests that elliptic flow develops before

the hadronisation of a deconfined medium. In addition, hadrons that exhibit v2 must therefore

be created via the hadronisation of partons that experience anisotropic flow. The controversial

aspect of v2/n scaling is that partons must be constituent quarks with masses equal to those found

within hadrons. Furthermore v2/n scaling can be interpreted as a signature of hadron formation

via coalescence.

2.1.4 Quark coalescence

Constituent quarks scaling suggests that hadronisation occurs via quark coalescence. This is sup-

ported by the observed baryon enhancement at intermediate pT in central Au + Au relative to d +

Au [39]. The hadron spectra is expected to be dominated by pions for all pT . Figure 2.7 indicates

that the p/π ratio in central Au + Au is greater than unity at pT between 2-3 GeV/c and is greater

than the p/π ratio determined in periperal Au + Au and d + Au in the range 1-6 GeV/c. The lack

of an enhancement at high pT suggests that quark scaling does have a limited reach and above

6 GeV/c fragmentation production mechanisms are expected to dominate. Incidentally, the p/π

ratio for the three system sizes all agree within errors above 6 GeV/c.

Hadronisation via quark recombination or coalescence was initially introduced to explain the v2

enhancement observed for baryons in Au +Au collisions [40]. At a similar time, quark coalescence

was introduced as the mechanism responsible for the proton enhancement, described in section

2.1.3, witnessed at intermediate pT [41]. In the coalescence picture, free quarks in a densely

populated phase space can combine to form baryons and mesons. The coalescence mechanism is

expected to dominate over the fragmentation mechanism up to pT ∼ 5 GeV/c as coalescence is

limited by a steeply falling pT distribution. This is due to fragmentation requiring a much higher

initial momentum p, to produce a pion of momentum pπ , where p = pπ/z. While coalescence
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(a)

(b)

Figure 2.6: Figure (a) shows v2 as a function of pT for different hadron species. Figure (b) reveals
that v2/n as a function of pT/n for identified hadron species explains the observed v2 split of
baryons and mesons as all hadrons fall upon a single fit function [37].
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Figure 2.7: The p/π+ and p̄/π− ratios from d+Au and Au+Au collisions at
√

sNN = 200 GeV
[39].

requires only that the the valence quarks carry ∼ pπ/2 or for baryons ∼ pB/3 of the total hadron

momentum.

The coalescence models, such as the one described in [41], are not sensitive to the actual recombi-

nation process but rely upon the probability of forming hadrons from a single parton distribution

of quarks and anti-quarks. The resulting baryon to meson ratio is independent of the hadron mo-

mentum and can be calculated by considering the ratio of the number of quark degrees of freedom

contributing to each specific hadron such as colour, flavour and helicity. The result for the proton

to pion ratio is shown in equation 2.5 where Cp
C

π+
is the ratio of the summations of the quark degrees

of freedom for protons and pions.

dNp/dNπ+ = eµB/T Cp

Cπ+
=

5
3

eµB/T (2.5)

Charged hadron spectra taken from Au + Au collisions with
√

sNN = 200 GeV at RHIC have been

fit with a function that combines coalescence and high pT suppressed fragmentation [42]. The

resulting function, shown in figure 2.8, shows how recombination and fragmentation dominate at

different scales of pT . In addition the predicted p/π+ ratio is shown below the spectra fit, which
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Figure 2.8: A fit to the inclusive pT spectrum of charged hadrons in central Au + Au collisions
at
√

sNN = 200 GeV using a combined recombination and fragmentation function. Below the
resulting p/π+ ratio taken from the fit function [42]. This below curve can be seen as a dashed
black line compared to the STAR data in figure 2.7

can be seen in figure 2.7 to accurately describe the RHIC data between 2-4.5 GeV but fails to

follow the ratio out to higher pT . This can be regarded as a reasonable success for coalescence,

however the data suggests that a purely fragmentation interpretation does not describe the p/π+

ratio at pT greater than 5 GeV/c.

The recombination model has been used to compare the RCP (ratio of central to peripheral colli-

sions) results for identified spectra of neutral strange hadrons (Λ and K0
S ) as well as neutral pions

and protons [43]. The model shows reasonable agreement with the data, yet the statistics available

were insufficient to extend the fits beyond pT = 6 GeV/c. What the model predicts is that the

RCP would simply follow the suppression factor, used for estimating the suppressed fragmentation

function, and all hadronic species would lie on the same curve. Although there is a suggestion

that the Λ and K0
S curves join around pT = 5 GeV/c there remains the fact that there are sim-
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ply insufficient data points to confirm that these hadrons are created from a purely fragmentation

mechanism.

The recombination model presented by Hwa, depicted as a pink dashed line in figure 2.7, com-

bines the partons produced by fragmentation with the partons created in the underlying event in

a method where all partons hadronise by recombination [44]. This model does not fit as well to

the pT range below 5 GeV/c as the model in [42] but is closer to the data above 5 GeV/c. As the

Hwa recombination model is closer to the data, it suggests that there may well be partons from

fragmentation coalescing with thermal partons to some degree at RHIC.
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Chapter 3

THEORY

In this chapter, the theory regarding the process of jet production will be reviewed from the initial

cross section for hard scattering to hadronisation via fragmentation. The current theoretical ap-

proaches that are being developed to describe the nature of the suppression in heavy ion collisions

will also be reviewed. Proposed jet modification signatures that could be discovered in the jet

spectra will be discussed.

3.1 Hard Scattering

A hard scattering event is an elastic collision between two partons where a large Q2 is transferred

allowing for a perturbative calculation of the cross section in QCD.

The cross section for hard scattered hadron production can be calculated using a factorisation

theorem, which is a convolution of three components. The Parton Distribution Function (PDF),

describing the initial state conditions of the colliding bodies, a pQCD hard scattering cross section

and a fragmentation function, which provide the probability of a given parton fragmenting into

a specific hadron. Equation 3.1 illustrates a generic cross section for the production of a given

hadron, h, per unit of pseudorapidity, η , and pT . In the PDF i is the incident parton, either q,q̄ or
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g and ab→ cd can be any of the possible hard scattering processes qq→ qq, qg→ qg, gg→ gg.

dσh

dηd p2
T
= ∑

abcd

∫
dxadxbdz PDF(i,xa)PDF(i,xb)⊗

dσ

dt̂
(ab→ cd)⊗D(h,zc)D(h,zd) (3.1)

3.1.1 Parton distribution functions

Before calculating the cross section for hard scattering events, it is necessary to predict the dis-

tribution of momentum amongst the partons within the colliding bodies. The internal structure of

hadrons cannot be described using pQCD as the structure is determined by the long range com-

ponent of the strong interaction. Deep inelastic scattering experiments have not only revealed that

protons are a multi-parton entity of gluons and quarks, they have also shown that the proton PDF

is a function of x and Q2. The structure of the proton has been studied for 10−4 < x < 0.65 and 1.

Q2 . 30000 GeV2 using e+ p collisions at HERA [45].

The PDFs were determined for positive and negative (anti)quark species and gluons at fixed values

of Q2. Figure 3.1 reveals how the momentum distribution of partons in a proton depends upon the

parton species. The model fits are in good agreement with experimental data and demonstrates that

the proton PDF is dominated by gluons. However in the high x region (x > 0.3) valence quarks

dominate the PDF. The probability of hard scattering events can be calculated by integrating over

all possible initial states, provided by the PDF, and the hard scattering cross section [46].

Due to the vast majority of partons being low x (x < 0.01) gluons, qg→ qg scattering can be seen

to dominate the jet cross section in figure 3.2(a). At higher jet pT , high x partons are the only

suitable candidates for jet production if the centre of mass energy remains constant. The jet cross

section at pT > 40 GeV/c is therefore dominated by valence quark scattering. Yet figure 3.2(b)

shows that the hard scattering cross section of jets with pT > 40 GeV/c at RHIC energy is orders

of magnitude smaller than the jet events at pT < 20 GeV/c. Therefore the jet production cross

section at RHIC is dominated by gg and qg scattering.
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Figure 3.1: Proton PDFs xU = x(u + c), xŪ = x( ū + c̄), xD = x(d + s), xD̄ = x(d̄ + s̄) and xg as
determined from the H1 fits at the starting scale Q2 = 4 GeV2 [45]. Valence quarks are shown to
dominate in the high x region while gluons dominate the remaining distribution

3.1.2 Fragmentation functions

Fragmentation functions, denoted as D(h,z), can be used to represent the probability of a given

parton fragmenting into a specific hadron, h, where the hadron carries a certain fraction of the

parton’s energy, z. Fragmentation functions represent the final state after a hard scattering event

whereas PDFs represent the initial state before the event. In high energy collisions the energy of

the scattered parton can be established by reconstructing the jet to which the parton fragmented

by summing the energy of each hadron within the jet. Experimentally, e+e− experiments allow

for a simple method of identifying the energy of the hard scattered parton as the two quarks are

produced with equal and opposite momenta, ±
√

s/2. In hadron collisions the hard scattering is

only a sub event of the entire collision as soft scattering also occurs between the remaining partons
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(a) (b)

Figure 3.2: Results from pQCD calculations for the jet cross section at RHIC energy in p + p
events. Figure (a) shows the relative contributions of the various partonic initial states to the
single-inclusive jet cross section. Figure (b) shows NLO and NLL results for the single-inclusive
jet cross section [46].

taking part in the collision.

As fragmentation functions are part of a factorisation theorem, they are independent of any initial

state effects and are only determined by the flavour of the parton and Q2. The fragmentation of

any given parton should therefore be independent of the colliding body allowing for e+e− data to

be used to measure the fragmentation functions that may be applied to hadron-hadron collisions

[47]. A study of jet fragmentation by the UA1 collaboration at CERN compared the fragmentation

functions from pp̄ collisions to those from e+e− collisions for similar jet energies. The conclusion

was that the observed fragmentation function into charged hadrons in pp̄ collisions is indeed very

similar to that seen in e+e− jets [48].

The inclusive fragmentation functions for light and heavy charged hadrons were studied by ALEPH

at LEP and SLD at SLAC [6, 49]. The inclusive particle spectra from e+e− collisions at LEP is

shown in figure 3.3. The inclusive spectra has also been separated into quark flavour categories,

where the quark flavour corresponds to the initial pair of particles created from the decay of Z0

bosons. Figure 3.3 revels that experimental results can be used to constrain next-to-leading order
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Figure 3.3: ALEPH inclusive particle spectra, measured at the Z0 pole from e+e− annihilation
[50]. The particle spectra has been split into hadrons rich in b, c and uds quarks.

QCD fragmentation functions by using the function to fit the data. An observation from figure 3.3

is that there is a steep curve dependence with z, where z is 2Ehadron/
√

s, implying that the vast

majority of jet fragments are soft low momentum particles.

Evidence for a single particle carrying the majority of the jet energy was found at the CERN

ISR and can be seen in figure 3.4. The z dependence of hadrons, where z is now referring to

the fraction of the momentum carried by a hadron with respect to the highest momentum hadron

in the jet, is shown to also have a steep curve dependence like the inclusive spectra. Further

studies at FERMILAB have supported the leading particle observation and found that the leading
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Figure 3.4: Fraction of trigger momentum z taken by charged secondary hadrons from p + p
collisions at CERN ISR [52]. The three data sets reference different trigger particle pT acceptance.

particle carried up to 90% of the total jet momentum in p + A collisions [51]. The significance of

the leading particle observation to the current analysis is that it motivates using the two particle

correlation method, which relies exclusively on a single high pT trigger, for jet finding.

3.2 Fragmentation

Once the hard scattering has taken place the scattered partons will fragment into further partons

and finally hadronise to form colour neutral hadrons. There are currently three leading theories

regarding hadronisation, the string model [53], the independent fragmentation model [54] and the

cluster model [55], which has been subject to recent modification [56].

The string model uses gluons as field lines, utilising the self-interaction of gluons to justify com-
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pressing gluons into narrow colour rich strings that propagate between quarks. The independent

fragmentation model treats the collided partons independently and uses a quadratic fragmentation

function to determine the relative momentum of a given hadron to that of the parent parton. The

cluster model creates a parton shower of gluons. Once all the gluons have been created, they

are converted to quark-antiquark pairs that are then clustered into groups of pairs that decay into

hadrons. The string model will be discussed in the following section as this theory forms the basic

particle production principles that are used by the Monte Carlo event generator package Pythia

that shall be used to simulate p + p events for this thesis.

All three theories have been tested with experimental data with varying success [57]. The model

predictions were compared with the results from the Positron-Electron Project (PEP) at
√

s = 29

GeV. The string model provided a good description of the data while the independent fragmen-

tation model did not. The cluster model was untuned for the test at PEP but has been shown to

satisfactorily agree with hadron spectra taken from pp̄ collisions at
√

s = 200-1800 GeV [58].

Jet fragmentation has been thoroughly examined using e+e− colliders yet there remains uncer-

tainties when applied to hadron-hadron collisions. The main cause for theoretical concern is that

the events produced in hadron-hadron collisions are governed largely by non-pertabative soft pro-

cesses. Modeling the final state hadron spectra has therefore been notoriously challenging and

requires extensive tuning of the Monte Carlo event generator parameters [59].

3.2.1 Lund string model

There are several string models being used to describe fragmentation, yet they are all based on a

common starting point. A typical demonstration of the string model is to consider the space-time

evolution of a qq̄ pair created from the annihilation of e+e−. As the pair of quarks separate, the

colour field between them collapses due to the self interaction of the gluons. The collapsed colour

field can be described as a flux tube of uniform energy density per unit length leading to a linearly

dependent potential experienced by one quark due to the other. Experimental evidence has shown

that the diverging quarks fragment into jets and not just two separate hadrons. The dynamics of
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Figure 3.5: Space-time evolution of a string fragmenting into hadrons [2]. Hadronisation com-
mences at the centre of the string where lower momentum hadrons are produced

the flux tube can be described using a massless one dimensional string with negligible transverse

excitation [2].

The rupture of the string produces a shock wave that causes the massless string end points (quarks)

to oscillate about the rest frame of the string in what are described as yo-yo modes. These yo-yo

modes can be seen in figure 3.5 where the position of the quark anti-quark pairs that form the

new mesons, which have been created following string fractures, oscillate within their respective

meson boundary. Consequently the energy of the whole system fluctuates from the string to the

quarks in yo-yo modes [60]. The Lund string model describes a continuous fragmentation process

where the scattered quarks fragment over a period of time. The string model has been shown to

accurately describe three-jet events indicating that continuous fragmentation is occurring in the

vacuum and not a single fragmentation event where all the hadrons are created simultaneously

[61]. The scenario of continuous fragmentation is important when searching for jet modification

in heavy ion collisions as this conclusion permits the possibility that the fragments of the hard

scattered parton may also interact with the medium.

3.2.2 Baryon production

The structure of the valence quarks in baryons is described using a Y shaped string, which would

appear reasonable when utilising the collapsing colour field idea, with each end point correspond-
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Figure 3.6: BMB configuration in the string-framentation model [66]

ing to a quark. The junction at the centre of the string is considered as the carrier of the baryonic

number [62]. The fragmentation mechanism that leads to baryon production is not as simple as the

meson description as baryons must be produced in pairs. Not only must they be produced in pairs

they cannot contain a mix of quarks and anti-quarks. This essentially gives rise to baryon number

conservation as baryons must be formed as baryon anti-baryon pairs.

The most recognized baryon production mechanism from fragmentation is the Baryon, Meson

anti-Baryon popcorn model that stemmed from the original Lund string theory [63]. Figure 3.6

illustrates how a meson is sandwiched by a baryon-anti-baryon pair in the popcorn model. This

method of producing baryons has been successfully matched to data from the PEP4-TPC collab-

oration, the OPAL collaboration at LEP and the TOPAZ collaboration at TRISTAN all of which

observed the BMB ordering by comparing the angular distribution of pp̄ pairs with string model

predictions [64, 65, 66].

3.3 Jets in Heavy Ion Collisions

The initial state is different in heavy ion collision than that found in hadron-hadron collisions. By

using an appropriate nuclear PDF, the particle spectra from heavy ion collision could be modeled
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using the same fragmentation function, assuming that factorisation holds. Any deviation from the

model using the nuclear PDF would be attributed to a modified fragmentation function.

Establishing the initial conditions is an important step in understanding and predicting the outcome

of any given heavy ion collision. There have been experiments, such as the fixed target experiments

at FERMILAB, that have studied the nuclear PDF of cold nuclear matter using electron-nucleus

collisions and proton-nucleus collisions [67]. However the nuclear PDF of gluons has proved

difficult to constrain as the low x region, where gluons dominate the nuclear PDF, has not been

probed by experiment.

There has been suggestions that there could be significant differences between the PDF of nucleon

matter and that of nuclear matter when accelerated to high energy. This is due to the strong growth

in gluon density at low x, which is dependent on the number of nucleons. As a result, parton

saturation has been the focus of intense study in recent years in an attempt to understand bulk

properties in heavy ion collisions such as the Npart scaling of inclusive hadrons at intermediate to

high pT [68].

The latest EPS09 NLO model developed to describe the nuclear PDF uses inclusive pion data

measured at RHIC as the pion spectra at intermediate pT has been found to be sensitive to the

gluon distributions [69]. Figure 3.7(a) shows the predicted nuclear modifications, RPb
i , where R

is the ratio of the PDF per nucleon in a nucleus to the PDF per nucleon of deuterium, to the PDF

for lead nuclei from the EPS09 NLO model that has been constrained by experimental data. The

nuclear PDF taken from these fits shows good agreement with h− production in d+ Au at high

rapidity where the greater suppression of negative hadrons than positive hadrons has been said to

be a sign of saturation effects [70].

At low Q2 there appears to be a strong suggestion of both nuclear anti-shadowing at intermediate

x and nuclear shadowing at low x resulting in the multiple scattering of the incident parton. The

anti-shadowing effect is almost exclusively produced from gluon scattering. However there are

large uncertainties attributed to these predictions where little or no experimental data is available.

Figure 3.7(a) also shows how the nuclear modification to the PDF is Q2 dependent. At high Q2,

only a slight modification is predicted to nuclear PDF.
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(a)

(b)

Figure 3.7: The nuclear modifications Rvalence, Rsea and Rgluon for low and high Q2 values are
shown in figure (a).. The high x and low x gluon regions show large uncertainties due to lack of
experimental data. The physical consequences of the nuclear modification factor at different scales
of x are shown in figure (b). The five labels correspond to the parameters used in the fit [67].
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3.4 Modelling jet modification

This chapter has so far discussed the creation of jets and how there is evidence to suggest that

the incidence of hard scattering in heavy ion collisions should scale with the number of binary

collisions. Experimentally this is not the case in A + A collisions, which has already been alluded

to in section 2.1. The experimental observations indicate that final state interactions are the cause

of the high pT suppression yet it is non-trivial to decipher what actually constitutes the final state.

There have been several attempts to describe the high pT attenuation observed at RHIC. They

can be broadly summarised into two distinguishable categories where either the attenuation is

modeled via the multiple radiation of soft gluons or via scattering producing few hard gluons. In

the following parts of this section, an example of each category shall be reviewed followed by a

summary contrasting the strengths and weaknesses of each approach.

The original work on suppression by Wang, Gyulassy and Plümer incorporates the Landau-Pomeranchuk-

Migdal effect into a QCD framework and calculates the resulting elastic and radiative components

to the energy loss per unit length, −dE/dz [71]. The calculated radiative energy loss is very sen-

sitive to the colour screening scale which itself is sensitive to temperature. The calculation also

predicts that only ∼ 25% of the total energy loss is due to elastic collisions and that the contribu-

tion from elastic collisions decreases as a function of parton energy. However, the derivation was

performed under the assumption of a weakly interacting QGP where αs could be treated perturba-

tively and the interaction range is small compared to the mean free path. A shorter mean free path

and larger αs could possibly favour elastic scattering as the Landau-Pomeranchuk-Migdal effect is

enhanced when the mean free path is smaller than or comparable to the radiative gluon formation

time.

3.4.1 BDMPS approach to high pT attenuation

An example of a soft gluon radiation theory is the BDMPS formalisation, named after the authors,

Baier, Dokshitzer, Mueller, Peigné and Schiff [72]. Modeling the radiative energy loss of a particle

traversing matter has been studied in QED and the BDMPS formalisation is a modification of the
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theory used to describe the QED case. In the QCD case a αs
√

E dependence was calculated for

−dE/dz and the total energy loss, ∆E, was found to be proportional to the square of the medium

size, L2. The BDMPS result predicts large attenuation, a result that was initially surprising until

the discover of such an attenuation at RHIC. The energy loss mechanism, developed in the parton

quenching model by BDMPS, requires the computation of a transport coefficient q̂, where the scale

of the energy loss is set by the characteristic energy of the radiated gluons, ωc, shown in equation

3.2 where kT is the transverse momentum with respect to the parton direction and λ is the mean

free path of the energetic parton [73]. In short q̂ is related to the density of the medium.

ωc = q̂L2/2 (3.2)

q̂ =
〈
k2

T
〉
/λ

Figure 3.8 shows how q̂ can vary by making small adjustments to the simulation parameters. The

use of a Glauber model to compute the path length in figure 3.8(b) is more sophisticated than

assuming a fixed average path length of 6 fm, which was the case in figure 3.8(a). In Figure 3.8(b)

a shaded area is shown as the result for a fixed q̂ = 15 Gev2/ f m. The upper limit to the shaded area

is where the calculation of energy loss is performed when ∆E is less than E and the lower limit is

where if ∆E is greater than E, ∆E is set to E.

Although q̂ = 15 Gev2/ f m is an order of magnitude higher when using a Glauber model to compute

the path length instead of using a static medium it does not suggest that q̂ is arbitrary. Increasing

the density of the system does not linearly increase the suppression thus limiting the accuracy to

which the high pT spectra can determine q̂ to a range of 5-15 Gev2/ f m [74].

The BDMPS model does show good agreement with the RAA extracted from RHIC data not only

with central events but at all centralities. One slight limiting factor is the model can only be used

where fragmentation dominates the hadron spectra as initial state effects (i.e Cronin effect) and

in-medium hadronisation are expected to play a major role in hadron production at low pT .
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Figure 3.8: BDMPS model RAA predictions using different q̂ values compared to the observed RAA
for hadons observed at RHIC in central Au + Au collisions [73]. Figure (a) uses a static path length,
while the figure (b) uses a Glauber model to describe the geometry of the collision and subsequent
path lengths.

3.4.2 GLV approach to high pT attenuation

An alternative approach to high pT suppression is to consider energy loss via a few hard gluon

emissions. One such approach is the Gyulassy-Levai-Vitev (GLV) model where the key parameter

is the opacity of the medium, χ , which is proportional to the medium density, ρ , where χ = σρL,

σ is the hard scattering cross section and L is the path length [75].

In Figure 3.9, the GLV model for a static medium has been compared to the neutral pion spectra

in Au + Au collisions at
√

sNN = 130 GeV [76]. The pion spectra is most accurately described by

an opacity between 3-4, which suggest that the mean number of collisions is also 3-4.

The ratio of the central to peripheral pion yields normalised by the number of binary collisions,

denoted in figure 3.10 as R, can be used as a consistency check to see whether it too agrees with an

opacity between 3-4. Figure 3.10 shows that R does agree with the previous finding in figure 3.9

where the opacity is between 3-4. It is important to note that static opacities do not account for the

rapid expansion and thus dilution of the medium after the collision.

When considering an expanding medium a fixed opacity can not be used. To estimate the medium

density, the soft parton rapidity density, dNg/dy, is related to ∆E in order to account for the system

size dependence of high pT suppression. In the limit of large parton energy, ∆E is proportional
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Figure 3.9: π0 spectra in Au + Au collisions at
√

sNN = 130 GeV compared to GLV model pre-
dictions with different opacity values [76]. The central collisions data most closely matches an
opacity that is between 3-4 where λ is the mean free path, while the peripheral data is best fit with
an opacity of zero.
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Figure 3.10: Comparison between GLV model and the ratio of the central to peripheral pion yields,
R, of π0 spectra in Au + Au collisions at

√
sNN = 130 GeV [76]. The data most closely matches an

opacity that is between 3-4.

to the number of participants, Npart , such that ∆E/E ∝ N2/3
part [77]. When the GLV prediction is

compared with π0 R, denoted as RAA in figure 3.11, calculated for both Au + Au and Cu + Cu,

there is found to be reasonable agreement. Within the yellow band in figure 3.11 is where the π0

data is expected to be found if there is good agreement with the GLV prediction. The upper and

lower bounds of the yellow band use a dNg/dy equal to 800 and 1175 for Au + Au and 255 and

370 for Cu + Cu.

3.4.3 Collisional energy loss

An additional approach to high pT suppression is to consider collisional energy loss and hard

gluon emission, which gained renewed interest after the suppression observed in the non-photonic

electron RAA (electrons from the decay of B and D mesons) could not be accounted for by radiative

energy loss alone [78]. Heavy flavour quarks are expected to experience less suppression from

radiative energy loss due to their large mass restricting the phase space for gluon emission known
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Figure 3.11: Comparison between GLV model and RAA of π0 spectra in Au + Au and Cu + Cu
collisions at

√
sNN = 200 GeV [77]. The RAA of π0 spectra follows closely the yellow band lower

bound of dNg/dy = 1175 in Au + Au, while in Cu + Cu the data falls within the yellow band.
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as the dead cone effect [79].

One such approach uses the Fokker Planck equation to dynamically evolve parton spectra and cal-

culate the RAA for neutral pions [80]. The pion RAA is accurately described by the pure collisional

energy loss framework and there is the suggestion that including the three body elastic channels

may further increase Ec, the parton energy below which elastic energy loss dominates, above 30

GeV for collisions at
√

sNN = 200 GeV. A comparison study that used both radiative and collisional

mechanisms for high pT suppression concluded that both frameworks can be used to describe the

suppression [81]. The main observation is that the two models produce comparable results if com-

parable sets of model parameters are used. The only significant difference is that the energy of

the gluons involved are different with radiative processes dominating when ω < ωc and collisional

processes dominate when ω > ωc.

There remains significant doubt as to which of the aforementioned energy loss processes is the

dominant process in high pT suppression. Each model can be tuned to describe experimental data

therefore it is difficult to suggest which model is more significant. A comparison of four different

approaches to high pT suppression concluded that discrepancies in the transport coefficient, q̂,

surmount between each method when using the same basic assumptions and approximations [82].

In conclusion, there is no doubt that high pT particles are suppressed in the presence of the medium

created in heavy ion collisions at RHIC. What is not well understood is the energy loss mechanism.

It must be assumed that both radiative and collisional energy loss mechanisms contribute to the

overall suppression observed. The important conclusion for this analysis is that both radiative

and collisional energy loss mechanisms allow for the transfer of properties, quantum numbers or

simply momentum, from and to the medium via partonic interactions that could be seen in the

modification of jet hadron spectra. The full scale of these partonic interactions shall be addressed

in the remainder of this chapter.
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3.4.4 Modified fragmentation

There are two possible scenarios that could describe the high pT suppression observed in central Au

+ Au collisions. The first scenario is where the high pT parton losses energy while traversing the

medium and then fragments, in vacuum, creating a lower energy jet that is otherwise unperturbed

by the preceding interaction with the medium. The second scenario considers that the energy is not

lost to the medium, but the fragmentation process begins within the medium, in addition to further

fragmentation in vacuum. The second scenario describes modified fragmentation and this is will

be discussed further in this section.

When an energetic parton interacts strongly with a deconfined medium, colour must be exchanged.

The interaction alters the colour composition of the partonic shower, which ultimately must affect

hadronisation. At the end of the partonic evolution the correct distribution of colour must exist in

the pre-hadronic shower for colourless hadron states to form. Overall the interaction would lead

to a variation in the distribution of the jet invariant mass due to the additional interaction with the

medium. There are possible additional effects of interaction, other than colour exchange, that could

be observable in jet spectra such as multiplicity, flavour, baryon number and the possibility of jet

fragments hadronising, via recombination, with thermal quarks from the medium. The possible

consequences of each affect shall be revisited briefly in turn at the end of this section.

An approach developed by Sapeta and Wiedemann studies modified jet multiplicity by applying

an enhanced parton splitting component to a radiative high pT suppression model to incorporate

perturbation by a deconfined medium [83]. They acknowledge that the other previously mentioned

affects could also contribute to jet modification and thus they expect that their predicted spectral

modification is an underestimate. The model used by Sapeta and Wiedemann uses a modified

leading logarithmic approximation (MLLA) [84], supplemented by local parton-hadron duality

(LPHD) [85] to calculate the parton distribution, Dq,g(ξ ,τ,λ ) where ξ = ln(1/x), τ = ln(Q/Λ)

and λ = ln(Q0/Λ), within a jet, where E jet ∼Q . In this description, Λ and Q0 (which is≈Mhadron)

are both fit parameters that constrain the parton shower evolution to remain above a perturbatively

calculable limit in Q2.
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The MLLA+LPHD approach has proved successful at recreating the opening angle dependence

of unidentified inclusive charged jet spectra and the momentum distribution of identified inclusive

charged jet spectra for in-vacuum fragmentation of jets in pp̄ collisions at
√

s = 1.8 TeV [86].

Unfortunately, as described in section 3.4.1, there is no unique method of describing medium

modification of jet fragments. Therefore the assumptions used by Sapeta and Wiedemann do not

constitute the only means to calculate medium modification. At the time of publication, the only

observable evidence for jet modification is the factor ∼ 5 suppression of hadron spectra in central

Au + Au collisions. The manipulation of the MLLA+LPHD model, in order to convey medium

modification, is very simple and requires only an additional factor (1+ fmedium), that enhances

all the parton splitting functions. The value of fmedium can be tuned to recreate the factor ∼ 5

suppression observed in RHIC hadron spectra.

The enhancement of parton splitting does lead to an enhancement in heavier hadrons, which can

be seen in figure 3.12. A critical consideration is that the jet energies displayed in figure 3.12 are

relevant to LHC energies. At RHIC, the jet energy spectrum is a factor ∼ 10 lower than those

expected at the LHC, which will greatly restrict the accessible pT range for jet hadrons [87]. Still,

the enhancement of heavier hadrons is a consequence of a reshuffling of hadronic yield from high

to low pT , therefore the heavy hadron enhancement could also be seen at RHIC.

The additional mechanisms that could lead to jet modification, which were not included in [83],

are considered here to provide a full picture of possible jet modification signatures. Coincidentally,

most modification possibilities lead to the same observation, which should make the modification

signal larger but severely limit any possibility of discovering the precise cause. Heavier hadrons

are enhanced for increased multiplicity jets, but this would also be the case for flavour exchange

and recombination with thermal quarks. Flavour exchange could increase heavy hadron yields, by

Compton processes such as q+ g→ g+ q as gluon jets exhibit a significant proton enhancement

when compared to quark jets [88]. If the QGP is full of strange quarks, these conversion would lead

to strangeness enhancement in addition to baryon enhancement in the jet. Recombination could

increase baryon or strangeness yields using similar arguments as the additional (strange)quarks

increase the production of (strange)baryons at higher pT . If recombination does alter jet spectra,
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Figure 3.12: Results of the MLLA+LPHD formalism for K±/π± and p(p̄)/π± ratios in jets with
energies Ejet = 50, 100 and 200 GeV [83]. The enhancement in both ratios increases with decreas-
ing jet energy and the onset of the enhancement occurs more sharply at lower jet energy
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it is expected to occur in the pT region 2-6 GeV/c, where recombination is predicted to dominate

the inclusive spectra. The signature for flavour conversions in jets would likely be an increase in

the yields of kaons and Λs at high pT [89]. The enhancement could lead to a significant increase in

the RAA for kaons in comparison to pions at high pT away from the recombination range (pT >5

GeV/c).

The jet spectra analysis performed in this thesis will not try to replicate the predictions in figure

3.12 as the study was performed using jet energies and hadron momenta that cannot be studied

at RHIC due to statistical limitations. The analysis will determine whether strangeness or baryon

enhancement can be observed from the Au + Au jet spectra, albeit at the lower end of the pT spec-

trum where the enhancement is smaller. The results of this analysis may also assist in explaining

why the coalescence model does not fit the experimental data above a pT of 4.5 GeV/c. By sep-

arating the hard jet component of an event from the soft thermal component, it will be possible

to determine whether the fragmentation function should be altered in Au + Au to account for an

increased p/π+ ratio or whether there remains a significant contribution from the thermal hadrons

in the inclusive spectra that is skewing the p/π+ ratio.

3.5 γ-Jet Events

Photons do not experience the high pT suppression seen with charged hadrons and therefore retain

their initial energy. Direct photons are created in hard scattering collisions either by Compton

scattering (q+g→ q+ γ) or by annihilation (q+ q̄→ g+ γ), where the second particle fragments

into a jet. These events can be used to quantify jet suppression using the photon energy as an

indicator of the initial jet energy. Furthermore, identifying dijets in heavy ion collisions using high

pT triggers is made more challenging due to the high pT suppression of hadrons that ultimately

leads to a bias towards jets that have experienced less attenuation. This is not the ideal situation

when trying to analysis jet modification in the medium. γ-jet events are considered to be the ideal

probe that can be used in study jets in heavy ion collisions as they do not suffer from a bias to jets

with less attenuation.
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Figure 3.13: The γ/π0 ratio as a function of pT at
√

sNN = 200 GeV. The three curves demonstrate
the model dependence of the γ/π0 ratio. The PP curve has been calculated for p + p collisions, the
Const curve and BH curves have been calculated using Au + Au collisions. The γ/π0 ratio is seen
to climb steeply when an energy dependent suppression factor, BH is applied to the π0 inclusive
cross section [90].

The ratio of direct photons to π0s has been calculated using perturbative QCD for Au + Au colli-

sions at
√

sNN = 200 GeV [90]. The inclusive cross section for π0 mesons was modified to include

a parton distribution that accounted for nuclear shadowing and a fragmentation function that in-

corporated energy dependent energy loss to mimic high pT suppression. Figure 3.13 shows the

resulting γ/π0 ratio for different systems, p + p, Au + Au using a constant energy loss factor and

Au + Au using an energy dependent energy loss factor. Using an energy dependent suppression

greatly increases the γ/π0 ratio, which reaches unity at pT ∼ 10 GeV/c. The energy dependent

suppression has been shown to quantitatively agree with π0 data from PHENIX [91]. Therefore,

there is expected to be a higher γ/π0 ratio in Au + Au collisions than p + p. Despite the in-

creased γ/π0 ratio, the neutral triggered data is still expected to be dominated by π0 mesons as

the electromagnetic calorimeter energy threshold used in this analysis was set at ET greater than 6

GeV.
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Chapter 4

THE STAR EXPERIMENT

4.1 The Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) collider began operations in 2000 and remains the

highest energy collider of heavy ions today. RHIC comprises two hexagonal concentric beam

pipes with circumferences of 3834 m and can accelerate a range of ions from protons to gold [92].

To manipulate the beam, 1,740 radio frequency superconducting magnets are distributed around

the curved corners of the collider. Multiple beam energies are accessible depending on ion species,

with the current maximum beam energies being 100A GeV for gold collisions and 250 GeV for

protons. Figure 4.1 shows that RHIC is an extension to the Alternate Gradient Synchrotron (AGS),

which is now part of the RHIC injection system. The AGS accelerates ion beams up to a maximum

of 10.8A GeV before injection into RHIC. Prior to the AGS, the ions are stripped of their electrons

at specific points during the injection cycle as depicted in figure 4.1. Once a steady beam has been

established, it can be maintained in the RHIC rings for several hours.

There are six beam-crossing points, located at four of the crossing points are the experiments,

STAR [93], PHENIX [94], BRAHMS [95] and PHOBOS [96]. The experiments PHOBOS and

BRAHMS ceased taking data in 2005 and 2006 respectively. Each experiment has its own unique

features and strengths culminating in an extensive collective study of the nuclear matter created

at RHIC. The two smaller experiments, PHOBOS and BRAHMS, benefitted from high sampling

rates and a large rapidity reach respectively. PHENIX was designed to observe electromagnetic
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probes such as those from the dilepton decay of heavy particles. STAR is a high acceptance

experiment designed to study the large multiplicity events created in heavy ion collisions. Although

with some electromagnetic capability, STAR has been optimised to study charged hadrons and

features full azimuthal coverage over a limited rapidity interval centered at mid-rapidity.

Figure 4.1: A schematic view of the RHIC accelerator complex [92].

4.2 STAR

STAR (Solenoidel Tracker At RHIC) is situated at the 6 o’ clock position of the ring and is one of

the larger experiments alongside PHENIX. STAR began taking data in 2000; shown in table 4.1

are the brief details of the different experiments and the number of events recorded for analysis.

Improvements made to the RHIC facility and STAR sampling rate has allowed for an increase in

the available statistics each year. With high statistic data sets, STAR can now be used to study rare

processes such as jets and heavy flavour physics. In reference to the current analysis, data shall be

taken from the 2007 Au + Au run and from the 2008 d + Au run. Further details of event statistics

and selection criteria will be given in chapter 5.

STAR was primarily designed as a hadron detector utilising the full azimuthal coverage of a Time
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Figure 4.2: The composite detectors of the STAR experiment [93].

Projection Chamber (TPC) to track charged hadrons expelled by the collision as seen in the centre

of figure 4.2. A Silicon Vertex Tracker, which sits between the TPC and the collision vertex,

provides further track points and improved collision vertex resolution via three tracking layers at 5

cm, 10 cm and 15 cm radially from the nominal beam line. A solenoidal magnet encompasses the

central rapidity detectors and is essential for charged particle identification in the TPC.

Over the past nine years of operations there have been upgrades to STAR including an ElectroMag-

netic Calorimeter (EMC). Completed in 2005, The EMC consists of two components, a full barrel

around the TPC and an end cap on the west side of STAR. A section of a time of flight detector has

been incorporated into the STAR experiment and should be fully installed for the 2010 run. For the

purposes of this thesis the TPC and the EMC will be described in detail along with the analytical

methods utilised to identify jets and hadrons.

4.3 The Time Projection Chamber

The Time Projection Chamber (TPC) is the central element of an array of detectors that constitute

STAR. It can reconstruct tracks from charged hadrons with momenta in excess of 100 MeV/c
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Table 4.1: RHIC run data since operations began in 2000. The quoted number of events are from
the 200 GeV heavy ion data sets. The increase in events does not linearly reflect the performance
of STAR/RHIC as each run had different trigger settings using different detectors, each of which
ran for different periods during each run.

Year Experiment Energy
√

sNN GeV Number of MinBias Events (Millions)
2000 Au + Au 130 1

2001/02 Au+Au & p+ p 200 1
2003 d +Au & p+ p 200 15
2004 Au+Au 200 & 62 40
2005 Cu+Cu 200 & 62 65
2006 p+ p 200 & 62 99
2007 Au+Au 200 90
2008 d +Au & p+ p 200 46

from particle multiplicities of ∼ 3000 tracks per event in central Au + Au collisions. Particle

identification is achieved by recording the momentum, charge and the ionisation energy loss (dE
dx )

of charged particles as they pass through the chamber. The TPC coverage ranges from ±1.8 units

in pseudorapidity along with the aforementioned full azimuthal coverage.

The STAR TPC consists of two cylindrical drift chambers separated by a thin conductive central

membrane situated at zero pseudorapidity seen clearly in figure 4.3. Each drift chamber is 2.1 m in

length and 4 m in diameter. The TPC is situated within a uniform magnetic field, provided by the

outer solenoidal magnet, with a nominal field strength of 0.5 T. The magnetic field bends the paths

of charged particles allowing the track momentum to be calculated from the curvature and charge

identification from the direction of curvature. Within the TPC itself, is an electric field which lies

parallel to the beam axis. The uniform electric field is provided by the −28 kV central membrane

and is controlled by the inner and outer field cages, the end caps are grounded at± 2.1 m. The field

cages, situated at 0.5 m and 2 m from the beam axis, consist of copper strip resistors that maintain

a uniform field within the drift chamber. The chamber is filled with a P10 gas (90% Ar, 10% CH4)

maintained at 2 mbar above atmospheric pressure. The gas composition has been selected due to

the high drift velocity (5.45 cm/µs) in a respectively low electric field corresponding to a drift time

of ≈ 40 µs.

At either end of the TPC are the anode end caps each consisting of 12 wedge shaped sectors that are
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Figure 4.3: The STAR TPC [97]

in turn divided into 45 pad rows with a total 68,304 pads. The pad rows are not evenly distributed

as each sector is split into an inner and outer section. Figure 4.4 shows how the inner and outer

pad rows consist of 13 and 32 rows respectively. The inner pads are shorter in order to distinguish

tracks from the high density inner region, close to the beam pipe, and to identify the large curvature

of low momentum tracks. The larger outer pads help to improve the dE
dx resolution.

Charged particles ionise the TPC gas molecules liberating electrons that drift to the ends of the

TPC under the influence of the electric field. At the end of the drift region is a gating grid that can

be triggered open if the event has been selected for recording. The accepted electrons pass through

a shield grid, where the drift chamber potential is grounded, into a proportional region. Here the

electron signal is amplified by accelerating the drift electrons using anode wires, held at a potential

of 1265V, causing secondary ionisation. The pad rows lie beyond the anode wires where an image

charge is induced by positive ions drifting away from the pads. The image charge is the TPC signal

that can be recorded as part of the event data.

The TPC has a sampling rate of 9.4 MHz and 512 time bins per sample that in correspondence

with the drift velocity creates a temporal analysis of the track path. By registering the charge

arrival time at the pad, an accurate account of the z component (parallel to the beam) of position is
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obtained. The pad coordinates complete the spacial description of the track with the x coordinate

taken along the pad row and the y coordinate taken perpendicular to the pad row. Considering

the total number of pads and sampling rate of the TPC, a three dimensional array of ∼ 70 million

pixels are available per event.

Figure 4.4: A sector from the anode pad plane showing the arrangement of the inner and outer pad
rows[97]

4.3.1 Track reconstruction

The track of a charged particle passing through the TPC is reconstructed by separately matching

ionisation clusters in the x, y and z space. The cluster finder searches for an image charge on

adjacent pads, within a pad row of comparable drift times. Once a cluster is found, the energy

from all the pads is summed to give the total ionisation signal for that cluster. Overlapping clusters

that correspond to two separate tracks can be separated using a peak finding algorithm that looks

for two peaks in the ionisation signal.

The coordinates of a cluster are determined by assuming the signal distribution across the pads in

the cluster is Gaussian. 2-dimensional Gaussian fits are performed on the clusters to determine

their centroids. Once the x and y centroids have been established, the z coordinate is computed,

along with adjustments for experimental effects such as non-uniformity of the electric or magnetic

field, to create spatial points. Beginning with the outermost spatial points, where the track density
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is lower, global tracks are reconstructed by linking together the points in sequence towards the

centre of the detector.

When the inner TPC boundary is reached, the tracks are extrapolated to the beam axis in order

to establish the primary vertex. Once the vertex position has been found it is then added as an

additional spatial point for all the tracks. The reconstruction algorithm is rerun in an attempt to

better fit the primary tracks, those that point back to the primary vertex. Tracks that do not point

back to the primary vertex are retained as global tracks. A reconstructed central Au + Au collision

at
√

sNN = 200 GeV is shown in figure 4.5. The image is produced as part of the offline tracking

process discussed in this section.

X

Y

ZX

Y

Z

Figure 4.5: Reconstructed TPC tracks from a central Au + Au collision at
√

sNN = 200 GeV. The
TPC is viewed parallel to the beam axis.

There are several reasons why some tracks would not point back to the primary vertex. Firstly

these tracks could be the decay products of heavy or strange hadrons and would therefore point
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back to their decay vertex. There can exist multiple vertices reconstructed by TPC tracks within

a given triggered event. This is mainly due to particle pile-up in the TPC where earlier or later

collisions are also detected as part of the selected collision. Due to the different electron drift

starting times, these additional events appear shifted in the z direction on either side of the central

membrane. These pile-up vertices are usually less well defined due to a lower track multiplicity

and asymmetric pseudorapidity distributions.

4.3.2 Centrality definitions

The data from reconstructed events can be categorised off-line into centrality classes from central

(small impact parameter) to peripheral (large impact parameter) collisions. The event multiplicity

is used to determine to which centrality class the event belongs. A reference multiplicity that only

includes tracks within the pseudorapidity interval |η |< 0.5 is used to determine the boundaries of

each centrality class. The reference multiplicity negates the need to consider tracking efficiencies

as a function of primary vertex position as the edges of the TPC range should not be included.

The reconstruction efficiency is high and approximately constant, ∼ 90%, in the selected range

however it does depend on pT . The reference multiplicity is then integrated into segments of

∼ 10 % of the total distribution. The concept is that the highest segment relates to events with

the smallest impact parameter (central collision) and each subsequent segment relates to a set of

collisions with a larger impact parameter. These segments are shown in figure 4.6 where the most

central collisions are shown in red and the most peripheral shown in blue.

Each centrality corresponds to a different range in Npart and Nbin earlier defined in section 2.1.

Glauber model Monte Carlo calculations relate the initial collision parameter conditions, such as

impact parameter, number of participants and number of binary collisions, to the reference mul-

tiplicity recorded in the data [24]. For this analysis, only a general idea of centrality is needed to

separate peripheral collisions from central collisions. As the tracking efficiency is relatively inde-

pendent of multiplicity, the uncorrected distribution gives the correct fraction of the cross-section.

Therefore the integration method will suffice in separating central and peripheral collisions.
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Figure 4.6: Reference multiplicity distribution for off-line centrality definition, in Au + Au colli-
sions at

√
sNN = 200 GeV. The fill colour represents the centrality class. From red to blue: 0-5%,

5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%.

4.4 The Barrel Electromagnetic Calorimeter

The Barrel Electromagnetic Calorimeter (BEMC), as can be seen in figure 4.7, is situated around

the TPC and covers roughly ±1 unit of pseudorapidity and the full azimuthal angle. The BEMC

detects the energy of electromagnetically interacting particles and is specifically designed to target

photons and electrons from rare events as well as π0 and η meson decays and charged hadrons

with high pT .

The BEMC was one of the first upgrades to the STAR experiment. The initial layout of STAR was

designed to allow space for the construction of a BEMC that could be installed in stages. A flexible

lead and plastic (Kuraray SCSN81) scintillator was chosen that could be installed relatively easily

in the form of individual thin modules. This choice of scintillator is also cost effective considering

the BEMC has to cover 60 m2. Another constraint on design is that the PhotoMultiplier Tubes

(PMTs) must be situated outside the magnet coils along with the front end electronics (FEEs)

and the high voltage system. The added bonus is that the near zero magnetic field allows for a

less complex and thus more cost effective PMT system. Yet the scintillator radiation still requires

transportation to the PMTs. In order to combat this issue a combination of plastic wavelength

shifting and clear optical fibers had been selected for the STAR design.

The BEMC consists of 120 modules, which individually cover 1 unit in pseudo-rapidity and 0.1
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Figure 4.7: Cross-section of the STAR EMC [98]

radians in azimuth. An individual module comprises of 20 layers of 5mm thick lead, 19 layers of 5

mm thick scintillator and 2 layers of 6 mm thick scintillator. The core structure, known as the stack

and shown in figure 4.8(b), is compressed by a combination of 30 straps that maintain an average

internal pressure of 1 bar. The stability of the stack is maintained by the friction between individual

layers thus the layers are prevented from sliding in any direction. The plastic scintillator has been

machined to contain 40 optically isolated tiles on each layer. The tiles have a WaveLength Shifting

(WLS) fiber embedded in a σ groove so that the signal from each tile can be readout individually.

A signal is taken from overlaying tiles from each of the 21 scintillator layers that progress into the

module and streamed to a single decoder box mounted outside the STAR magnet. The light from

the decoder box is the signal from an individual tower and the signal is then merged onto a PMT.

Figure 4.8(a) shows an example of a single module that is segmented into 40 towers. Each tower

has been positioned in a projective manner pointing to the centre of the interaction diamond. The

towers themselves cover a range of 0.05 in both η (pseudorapidity) and φ (azimuth). The tower

dimensions allows for the containment of shower energies up to 60 GeV, a total depth of 20X0 at

η =0, and reasonable single particle occupancy.

The first stage of a tower, the pre-shower detector, registers the particle shower development after

only 1 -1.5 radiation lengths (X0) in the tower and is built from the 6mm scintillator layers. The

radiation length varies with particle species as it refers to both the mean distance over which a

high-energy electron loses all but 1
e of its energy by Bremsstrahlung, and 7

9 of the mean free path
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(a) (b)

Figure 4.8: Schematic diagrams illustrating the construction of a STAR BEMC module [98]. Image
(a) shows the longitudinal view of a single STAR BEMC module showing the projective nature of
the towers, while image (b) is the end view of a STAR BEMC module showing the mechanical
assembly and rail mounting system

for pair production (e+e−) by a high-energy photon. The signal from the pre-shower detector is

extracted by four WLS fibers where one pair is taken to the PMT to calculate the total energy signal

and the second pair of fibers illuminates a single pixel of a multi anode PMT. There exists a total of

300, 16 pixel multi-anode PMTs with each individual pixel corresponding to the pre-shower signal

of each tower. Hadrons and electrons behave very differently in this first stage where ≈63% of

electrons (≈3% for hadrons) will shower before entering the pre-shower range and ≈84% (≈6%

for hadrons) shower by the middle of the pre-shower range. This behaviour greatly improves

electron/hadron discrimination in the BEMC.

Within the stacks of lead/scintillator is the Shower Maximum Detector (SMD). The SMD can be

seen in figure 4.9 below a cut away image of preceding scintillator stacks revealing the electro-

magnetic shower development before reaching the SMD. The SMD is essentially two layers of gas

wire pad chambers situated ≈ 5.6 X0 within the tower stack at η = 0 and a range of depths along

the module due to the projection of towers at different η values. The tower dimensions are not

comparable to the significantly smaller Moliere radius of the scintillator stack. Therefore the SMD
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was incorporated into the design to produce high spatial resolution of the electromagnetic showers,

which is vital for π0/γ discrimination.

Figure 4.9: An illustration depicting the reconstructed image of the electromagnetic shower front
[98]

A unique feature of the STAR SMD is the double layer design permitting two independent mu-

tually orthogonal planes of proportional wires. This novel design improves the reliability, and

functionality of the SMD in a high occupancy environment as well as improving hadron rejection

and π0/γ separation. Strips (cathodes) are etched in perpendicular (η and φ ) directions on the

two planes reconstructing a two dimensional image of the shower front that can be seen in figure

4.9 where the front and back planes are displayed as histograms. While referring to figure 4.10,

the SMD double layer system can be explained in more detail. Between the planes, 5mm wide

aluminium extrusion channels that run in the φ direction contain 50µm gold plated tungsten wires

(anodes) that are 1 unit in η long. The detector strips (cathodes) are sensitive to the induced charge

fluctuations from the charge amplification near the wire. The η direction strips span 30 channels

corresponding to a length equal that the width of the module and 0.0064 in η , while the φ direction

strips are 1.33cm wide and have lengths 0.1units in η .

The signal from the cathodes is very small, ≈7 femto coulombs per minimum ionising particle,

therefore it is propagated to the FEEs at the ends of the EMC along a transmission line plane
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Figure 4.10: Cross section view of the aluminum protrusions and the anode wires and cathode
strips of the STAR BEMC SMD [98]

located between the cathode plane and the outer enclosure of the detector to avoid any noise that

could be provided by the STAR magnet. The signals from 36000 readout channels from each

individual strip are then amplified to external digitilisers situated outside the STAR magnet.

4.5 Event Selection

Each event created in a heavy ion collision is unique as the final state is governed by a large

number of sub-processes that occur throughout the evolution of the event. In heavy ion collisions,

the number of possible final states is further increased by the impact parameter from central to

peripheral collisions. Event sampling rates are limited by the performance of the detectors and not

by the event frequency. At current RHIC luminosity, the collisions rate reaches ∼10 kHz, which

is much larger than the data acquisition rate of 100 Hz. Therefore, fast detectors can be used

to select specific events (for example central collisions) for data acquisition within the sampling

rate of slower detectors. The process of selecting events is known as triggering and is useful for

collecting rare events without the need for recording vast quantities of unwanted data.

The STAR trigger is a piplined system that has been designed to examine fast detector signals at

the RHIC crossing rate (∼ 10 MHz) [99]. The STAR trigger consists of four consecutive levels

of selection that the event must pass before being sent to storage. The decision to store an event

is made at level-3, which is the final level and a software trigger, where information from fast

and slow detectors are available. The level-0 trigger is the first stage of the triggering process and

issues a decision to progress to level-1 within 1 µs of the interaction taking place. The level-0

trigger issues a command to the slow detectors specified for that particular trigger to record data.
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While the slow detectors produce their signal, the level-1 trigger is examining a subset of the fast

detector signal to establish whether there is a clear signal, free of any background effect, that can

be forwarded to level-2. At level-2, the entire trigger data taken from the fast detectors can be used

to select events that pass more stringent trigger requirements.

Level-2 can be used to isolate collisions that carry rare events. Events containing jets may be

selected by identifying their signature signals such as a high energy deposit in a single EMC tower.

Level-1 operates within a decision time of ∼ 100 µs while level-2 has a time restraint of ∼ 5 ms.

If the event is not aborted at level-1 or level-2, the data is passed to the Data Acquisition (DAQ)

system where the level-3 trigger finally decides what data is stored.

4.5.1 Trigger detectors

There exists a number of fast detectors that provide the signal for the level-0 trigger. Level-0

trigger detectors do not suffer from dead time and are capable of detecting events at each beam

crossing. The main trigger detectors are the Zero Degree Calorimeters (ZDCs), that are situated

±18.25 m along the beam pipe away from the central rapidity detectors, the Central Trigger Barrel

(CTB) that surrounds the TPC and the EMC.

The ZDCs detect neutrons within a small solid angle near zero degrees from the beam line that

have been liberated during a heavy ion collision. A coincidence, within a given time window, of

neutrons in both ZDC detectors indicates that a collision has occurred. The timing of the signal

taken by the ZDCs can be used to disregard events occurring away from the centre of the experi-

ment (z = 0). The CTB is made up of a cylindrical array of 240 scintillation detectors. It detects the

charged particles created in the mid rapidity region and is used to determine the charged particle

multiplicity of the event. The CTB signal works in tandem with the ZDCs to estimate the centrality

of the collision.

The EMC level-0 signal can take two forms that both use the transverse energy of the event. Either

300 tower sums are taken from patches 0.2 by 0.2 in η and φ or 300 high tower values from the

highest energy tower in each patch are taken. This signal is processed to make a final level-0 trigger

62



4.6. PARTICLE IDENTIFICATION

decision based on total ET . The EMC was the trigger detector for the Au + Au data and was used

to detect jet events in the d + Au data used in this analysis.

A level-2 BEMC trigger was used to collect the 2007
√

sNN = 200 GeV Au + Au data used in

this analysis. The trigger was designed to isolate hard scattering events where the initial scattering

produced a high energy photon. The trigger requirements were that at least one tower must register

ET greater than 5.5 GeV. In addition, the level-2 trigger had another requirement that the ET from a

pair of adjacent towers must sum up to a value greater than 7.5 GeV. A similar trigger was selected

to collect data from the 2008
√

sNN = 200 GeV d + Au data. A high tower trigger, where an event is

selected if a BEMC tower registers an ET greater than 4.3 GeV, was chosen to provide a reference

sample. The d + Au data set should therefore contain similar triggers to those expected in the Au

+ Au data set selected for the current analysis.

4.6 Particle Identification

The TPC is the primary detector for the majority of the particle identification performed in STAR.

Charged particles can be identified by comparing the loss of energy per unit length (dE
dx ) with the

momentum of the particle. The momentum of a charged particle is calculated by fitting a circle

through the points along the track in the x−y plane. The radius of curvature and the angle the track

makes with respect to the beam axis in the r− z plane are then used to calculate the momentum. In

high track density environments, momentum smearing may occur when track points are assigned

to the wrong track.

The effects of momentum smearing can be minimised by increasing the magnetic field strength or

using only tracks with a high number of pad hits. The momentum resolution of the TPC has been

determined by measuring the momentum of simulated tracks that were embedded into real data.

The results indicate that the resolution is momentum dependent and estimates that the resolution

varies from 2-8% [97].
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4.6.1 Energy loss

When charged particles ionise the gas in the TPC, they transfer energy to the liberated electrons.

The dE
dx of a cluster is measured by using the sum of the drift electrons to estimate the energy

loss and dividing this value by the track path length along that particular pad row. Merged clusters,

identified using a double peak finding algorithm, are not used to calculate energy loss as the energy

deposited cannot be accurately assigned to the individual clusters. The energy loss along a selected

track can vary from a few eV to hundreds of eV, therefore multiple hit clusters are used to calculate

the most probable energy loss (∆p). A fit is performed to all clusters associated to a particular track

and ∆p is extracted. The calculation for ∆p uses a truncated mean value that disregards the top 30%

of cluster values. It can be inferred that the accuracy of the energy loss value relies heavily on the

number of hit points used when using this fit method. For tracks crossing greater than 40 of the

TPC pad rows, the resolution is estimated to be 5-10%. During this analysis, a cut on particles

that used greater than 20 hits for energy loss calculations was imposed so as not to diminish the

available statistics.

As mentioned earlier, the energy loss value obtained from the cluster fit is compared with the

momentum of the track. The energy loss as a function of momentum follows the Bichsel function

[101]. The Bichsel function uses ∆p/x, where x is the segment length through a detector, to identify

particles whereas alternative methods, such as the Bethe-Bloch formulation, use the mean energy

loss [102]. Although the Bethe-Bloch formulation can be used to calculate ∆p/x it does not consider

the finite size and orientation of the detector pads unlike the Bichsel function [100].

The ∆p/x dependence with segment length through an Argon detector can be seen in figure 4.11.

The Bethe-Bloch function, shown in figure 4.11, has been scaled so that the minimum ionisation

point has the same value as the Bichsel functions. The energy loss at high βγ diverges away from

the Bichsel function after the minimum ionisation point, implying that the energy dependence for

the Bethe-Bloch differs from that for the Bichsel function. Due to the diverging nature of the

results of the Bichsel and Bethe-Bloch formulae, it becomes more important at high momenta to

use the more appropriate Bichsel formula.
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Figure 4.11: Scaled values of ∆p/x for Argon segment lengths x as a function of particle mo-
mentum. The Bichsel functions (dashed lines) are shown to differ with segment length from the
Bethe-Bloch function at higher βγ [100].

The Bichsel function is based on Landau’s equation for ∆p shown in equation 4.1, where ξ =

xk/β 2, k is the coefficient for collision cross-section, I is the logarithmic mean excitation energy

of an absorber and δ (β ) is the density effect [103]. Although this equation does not incorporate

factors related to atomic structure, and therefore does not have the correct cross section, it does

show that ∆p varies as a function of x and β , which is the major adjustment from the Bethe-Bloch

formula.

∆p(x,β ) = ξ

[
ln2mc2

β
2
γ

2− lnI + ln
ξ

I
+0.2000−β

2−δ (β )

]
(4.1)

The STAR TPC was originally designed to discriminate between pions and protons up to a mo-

mentum of 1.2 GeV/c. Beyond this value, the energy loss, which for familiarity, ∆p/x shall be

denoted as dE
dx , becomes less mass dependent and requires a higher resolution detector to distin-

guish the particles. However, beyond 3-3.5 GeV/c, the particle species separate in dE
dx again up to

65



4.6. PARTICLE IDENTIFICATION

∼10 GeV/c. The coloured bands displayed in figure 4.12 show the dE
dx trends of pions, kaons, pro-

tons and electrons. In the top left panel, above log10(p) = 0.5 (≈ 3.2 GeV/c), the proton and pion

bands separate beyond the estimated 8% resolution of the TPC. Theoretically protons and pions

should be distinguishable however the kaon and proton bands overlap. The overlapping bands does

not allow for a simple dE
dx cut that could isolate protons from kaons therefore a statistical approach

will be required. The statistical approach consists of fitting the data with a function that consists of

variable gaussian distributions, each one corresponding to a different particle. The Bichsel func-

tions will be used to estimate the centroids of each histogram. A detailed description of the fitting

method will be given in chapter 5.

Figure 4.12: Bichsel functions for dE
dx as a function of momentum for charged particles. The

functions are shown as bands with an 8% resolution.

4.6.2 Neutral strange hadron reconstruction

Singly strange neutral hadrons (V0) can be identified via their charged weak decay products. A

secondary vertex, away from the primary vertex, is created when strange hadrons decay. This

second vertex can be found by reconstructing tracks that point to an origin that is not the primary
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vertex. A set of geometric cuts can be performed to establish whether these secondary vertices are

good candidates for V0 decay vertices. These geometrical cuts are shown in figure 4.13 and they

can be altered to either improve the purity of a sample or increase the statistics of strange hadron

candidates.

In this analysis, Λ(uds) and Λ̄ (ūd̄s̄) baryons were reconstructed. Their decay channels into charged

hadrons can be seen in the below equations along with the branching ratios.

Λ→ p+π
−(BR = 63.9±0.5%) (4.2)

Λ̄→ p−π
+(BR = 63.9±0.5%) (4.3)

Figure 4.13: Strange hadron reconstruction using reconstructed TPC tracks. The geometrical cuts
are also illustrated.

Once the V0 candidates that have passed the geometric cuts have been collected they can be sep-

arated into Λ, Λ̄ or K0
Short candidates by assuming the identity of the charged daughters then re-

constructing the invariant mass of the V0 candidate. If a candidate can be reconstructed as both

K0
Short and Λ or Λ̄ that candidate is rejected from the data. To limit the combinatoric background

from random pairs of tracks, a tight invariant mass acceptance is applied. The tight mass range

replaces a background subtraction as a background subtraction cannot remove individual tracks.

The information from individual tracks is essential for two particle correlations. Although back-

ground corrections to the invariant mass distribution can be performed after the correlation the

statistics in the selected ∆φ bins may be too small to obtain a measurable mass peak especially in
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the intermediate/high pT range.

Another useful outcome of identifying Λ and Λ̄ is that their daughters provide a near pure sample

of protons and anti-protons that can be used to calibrate the proton Bichsel function. This is

made possible due to the proton carrying the majority of the momentum after the Λ has decayed.

Unfortunately a pure source of pions is not obtainable in this manner from the decay products of

K0
Short , as each pion receives a similar share of the momentum. Thus a large sample of K0

Short with

a pT greater than 6 GeV/c would be required, which was not feasible using the current statistics.

4.7 Two Particle Correlations

A jet finding tool that has proved effective on numerous occasions is two particle correlations

[30, 104, 105, 106]. Two particle correlations reveal the angular distribution of particles relative

to a fixed point in an event. For jet finding, the fixed point is the selected trigger particle that is

believed to be the leading particle in the jet. Correlations are unable to identify jets on an event-

by-event basis as the jet is indistinguishable from other particles in the event. Yet they are able to

build a jet signal, summed over many events, that should be distinguishable from the underlying

event.

The initial correlation procedure is very simple. Once a choice of trigger is made (usually the high-

est pT particle in the event) the spatial coordinates of the remaining particles (associate particles)

in the event are recorded relative to the position of the trigger. The parameters used throughout this

analysis are the relative azimuthal distribution (track emission angle in x− y plane perpendicular

to the beam direction), ∆φ , and the relative pseudorapidity distribution, ∆η . In figure 4.14, an

image of a dijet has been imprinted onto a central Au + Au event taken by STAR. The image shows

that the TPC is saturated with tracks thus making jet identification difficult. However by perform-

ing a two particle correlation over many events the jet signal is extracted due to the consistent jet

fragments that appear close to the trigger in each event. The majority of two particle correlations

performed within STAR use TPC tracks to identify both the trigger and the associated particles.

For this analysis the BEMC was used to detect the triggers (using a charged particle veto so that
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Figure 4.14: Schematic representation of a dijet occurring in a central Au + Au event. The left
panel views the event parallel to the beam axis while the right panel is perpendicular to the beam.
The yellow arrow represents the trigger particle from where the spatial coordinates of all other
particles are taken. The red arrows indicate the position of the jet fragments. The length of the
arrow indicates the momentum of the particle.

the trigger was either a π0 or γ) and the TPC was used to detect the associated particles.

4.7.1 Correlation signal

The signal produced from two particle correlations can be split into three distinct regions: the

near-side jet, the away-side jet and the underlying event background. The relative contributions

from the three regions can be adjusted by altering the pT thresholds for the trigger and associated

tracks. The background is created by selecting pairs that are not part of a dijet signal. These pairs

could be a non jet trigger with any associated particle or a jet trigger with a non jet associated

particle. The incidence of non jet triggers can be reduced by selecting a high pT threshold for

trigger candidates. Likewise the incidence of non jet associated particles can be reduced by raising

the associated particle pT threshold. Yet the thresholds must remain low enough to target the

physics that motivated the correlation study. Raising the trigger thresholds restrict the number of

events that are selected and high associated thresholds diminish the jet signal that can be extracted.

A schematic view of a two particle correlation performed in the azimuthal plan is shown in figure

4.15. The near side peak (red) is created by pairs where the associated particle belongs to the

same jet as the trigger, while the away side peak (green) is created by pairs where the associated
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Figure 4.15: Schematic representation of a two-particle azimuthal correlation. The horizontal axis
represent the angular separation of trigger and associated tracks. The widths of the near side and
away side peaks are labelled σA and σB respectively. The level of the background is given by C
[107].

particle belongs to the second jet. Although the jet signal is created by dijets the two peaks can

be very different. The width of the away side peak, σB is generally measured to be larger than the

width of the near side peak, σB. This is the result of a trigger bias toward the near side jet as it

always contains the trigger particle. The jet containing the trigger particle will be the harder jet

with fewer fragments carrying the jet energy in a narrower cone. The away side jet must have a

softer profile as it does not contain the trigger, therefore there are more particles carrying the jet

energy in a wider cone. Furthermore, partons within the colliding bodies would have had finite

transverse momentum before the collisions leading to dijets that are not exactly back-to-back in

∆φ . By aligning with the trigger, the away side peak is smeared about ∆φ = π widening the peak.

In heavy ion collisions the near side peak is further biased as it must experience less attenuation

in the medium than the away side peak to contain the trigger. The attenuation of the away side jet

can widen the peak and reduce to the away side yield where fewer particles meet the pT threshold.

4.7.2 Analytical benefits of using an EMC trigger

The trigger selection is the first important stage of the analysis as the choice can have an impact

on the selected events, the available statistics and corrections to the jet signal such as background
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subtraction. The 2007 Au + Au at
√

sNN = 200 GeV run was the first heavy ions experiment at

STAR that benefitted from the fully installed EMC. Furthermore, as mentioned in section 4.5.1,

a high momentum EMC triggered data set was taken from the 2007 run in order to identify γ-jet

events. The data set will hereby be referred to as the st-gamma data set.

There are some unfortunate consequences of using tracks from the TPC for both trigger and as-

sociate particles. The STAR TPC is split into 12 segments at either end. Between each segment

is a gap where no hits can be recorded. Referring to figure 4.16(a) the gaps result in a periodic

depletion of tracks in the azimuthal plane. The depletion is present in both the trigger distribution

and the associated distribution for track-track correlations. When the correlation is performed, the

trigger distribution is convoluted across the associated distribution resulting in a ∆φ distribution

much like the one in figure 4.16(b).

In order to correct for the pad row spacing, the correlation must be scaled using a mixed event

background that replicates the periodic track depletion [107]. By applying a correction to the

correlation, the individual track information is lost and only the collective correlation remains.

The current analysis requires the correlated tracks to retain their information for identification

purposes therefore correcting the correlation in this manner is not an option. The EMC does have

sector gaps, but does not have an efficiency that has a strong φ dependence. Therefore correlations

that use an EMC trigger with TPC tracks do not produce a periodic undulation.

A second detector effect, created by performing track-track correlations, is a loss of signal close

to the trigger vertex on the near side jet. Figure 4.17 is a two dimensional correlation that shows

a reconstructed near side jet where the peak is situated at (∆φ ,∆η) = 0. A deficit is observed

in the number of pairs found at the centre of the jet. This deficit is caused by the limited two

track resolution of the TPC causing tracks to merge. Lower momentum associated tracks are

curved more severely by the STAR magnet than the higher momentum trigger track. The tracks

of particles produced very close to the trigger track can curve so that they cross the path of the

trigger. When the two paths lie within the TPC two track resolution their respective pad row hits

are merged into one signal. The signal is attributed to one of the tracks, which in the case of

correlations is always the trigger track, leading to a gap in the path of the second track. If the
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(a) (b)

Figure 4.16: In (a) the φη distribution of primary tracks taken from central Au + Au data is
shown. Colour indicates track density, increasing from blue to red. In (b) the ∆φ projection of an
uncorrected track-track correlation showing the TPC acceptance effect.

second track does not have enough hits to be reconstructed, or pass a good track selection, it is

lost from the data. This problem is most evident when tracks have similar pT and similar emission

angle.

Significant effort has been made to produce an algorithm that corrects the track merging effect in

two dimensional correlations [107]. Once again, a correction to the correlation results in the loss of

individual track information therefore any algorithm developed for correcting track merging would

not be suitable for this analysis. Using an neutral EMC trigger that does not produce a track in the

TPC prevents track merging being identified near the trigger negating the need for a correction.

4.7.3 γ-jet event selection using EMC triggers

A γ-jet event is produced by the hard scattering of a gluon and a quark (Compton scattering), where

qg→ qγ , or by quark anti-quark annihilation, where qq̄→ gγ . In both cases the scattered non-

photon component fragments to produce a jet. Section 4.4 described how the shower maximum

detector might be used to distinguish between single photons, such as those produced in a γ-jet

event, and dual photons from the π0→ γγ decay channel.
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Figure 4.17: ∆η −∆φ charged track correlation from central Au + Au with a trigger pT between
3-6 GeV/c and associated pT between 1-2.5 GeV/c. The effect of track merging on two particle
track-track correlations is observed as a deficit in the number of tracks close to (∆φ ,∆η) = 0.

The motivation for selecting γ-jet events is that photons do not interact as they escape the collision

system and in section 2.1 it was revealed that direct photons are not suppressed by the medium

created in heavy ion collision. In the transverse plane, the collective momentum of the jet must

correspond to that of the direct photon. Therefore a γ-jet event would provide a reference momen-

tum for jet attenuation measurements. Although the detecting of γ-jet events for jet attenuation

studies is an exciting prospect, it is not the primary reason why they have been chosen as the

trigger for this analysis.

A known issue with two particle correlations is that it introduces a jet surface emission bias when

the trigger is a hadron [108]. The discussion in section 3.4.1, led to the conclusion that high

pT suppression is proportional to some order of the projectile’s path length through the medium.

Therefore, by selecting a high pT trigger hadron, the trigger is bias toward hadrons that have shorter

path lengths and are emitted closer to the surface. A study at high trigger and associated pT did

show that the suppression observed on the away side jet decreases as a function of associated pT up

to and above 6 GeV/c [31]. At high associated pT , a large proportion of the selected events contain

tangential jets where neither jet as a significantly long path through the medium. If it is implied

that a shorter path length results in less modification, selecting hadron triggers could diminish the

possibility of observing modifications to the jet spectra. By using γ-jet events, the than 20 issue

73



4.7. TWO PARTICLE CORRELATIONS

is avoided as the photon trigger can be produced anywhere in the collision. The jets collected on

the away side should exhibit a full range of path lengths, maximising the possibility of observing

modification.

The associated pT range for this analysis is between 2-6 GeV/c, which corresponds to the region

where baryon enhancement is seen in central Au + Au. This is a respectively high choice for

associated pT as previous two particle jet studies have used predominantly low associated pT

below 2 GeV/c. By choosing a respectively large associated pT , a degree of surface emission bias

on the away side is inevitable. The away side surface emission can be minimised by increasing the

trigger pT threshold. A higher momentum trigger will increase the total energy of the jet resulting

in an increased mean path length that allows an away side signal to be observed.
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Chapter 5

EVENT SELECTION AND PARTICLE IDENTIFICATION

5.1 Introduction

Before continuing with the precise details of the particle identification technique a summary of

both the physics goals and how best to achieve those goals will be presented. This analysis aims to

identify how the hadron jet spectra are modified in the presence of a deconfined medium. In order

to reconstruct the hadron jet spectra, there are certain considerations that must be addressed. The

first task is to identify jets in heavy ion collisions that have not been fully quenched by their inter-

action with the medium. Once the jets are identified, the jet hadron spectra can then be extracted

from the energy loss distribution of tracks associated with the jets. Finally the hadron spectra from

jets in central Au + Au collisions are compared to the spectra of jets that have suffered no medium

interactions in order to explore the extent to which jets in central Au + Au collisions have been

modified.

Table 5.1 summarises the data sets used in this analysis. The analysis, which will be described

in this chapter and the following chapter, was implemented for the 2007 Au + Au data set for

both central (reference multiplicity of 0-10%) and peripheral (reference multiplicity of 40-80%)

collisions and the 2008 d + Au data set. Both data sets had the same collision energy of 200

GeV per nucleon pair in the centre of mass. The data from the Au + Au collisions were collected

using the level two st-gamma trigger that used the STAR electromagnetic calorimeter to select

events where an energy sum greater than 7.5 GeV was recorded between two adjacent towers with
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Table 5.1: Data summary table for the four colliding systems used in this analysis: central Au+Au,
peripheral Au + Au, d + Au and simulated p + p .

Data Experiment Trigger Number of Events
2007 st-gamma Au + Au 0-10% neutral particle ET > 6 GeV 131,232
2007 st-gamma Au + Au 40-80% neutral particle ET > 6 GeV 54,640

2008 Minimum Bias d + Au neutral particle ET > 6 GeV 163,516
2006 Pythia 6.4 p + p π0 pT > 6 GeV 1,000,000

one tower recording greater than 5.5 GeV. The data from d + Au collisions was collected using a

minimum bias trigger.

The st-gamma data set originally consisted of just over one million events before any selection

cuts were initiated. A cut on the primary vertex position, z, to be within 25 cm of the centre of the

TPC detector reduced the number of events by roughly 40 %. The remaining reduction in events

occurred after the reference multiplicity cuts, shown in section 5.3.1, and the trigger selection,

which is detailed in the following section. The d + Au minimum bias data set consisted of 46

million events. The vast reduction in statistics used for the current analysis was mainly due to the

trigger cut selection.

5.2 Identified Neutral Triggers

The trigger parameters are the initial constraints that are implemented when extracting useful data

from any given data set. The st-gamma data provide events that contain γ-jet candidates but does

not retain any information of the actual trigger, such as position on the electromagnetic calorimeter.

Ultimately the desired trigger particle will determine what information is needed from the electro-

magnetic calorimeter in order to identify the trigger. For this analysis, direct photons are the

desired trigger. To identify direct photons, reconstructed particle showers (points) on the shower

maximum detector are required. The point also contains the tower energy readout, or readouts

in the case of a particle showering into multiple towers, which is required to identify the highest

energy particle in the event.
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Figure 5.1: Tower ET distribution taken from electromagnetic calorimeter triggers. A power law
distribution is expected however large fluctuations are observed, above 20 GeV, that can be at-
tributed to faults in individual towers

Once the events that pass the trigger energy threshold have been collected, a few quality control

steps are necessary to verify that true neutral triggers have been detected. Firstly, at any given time

during the actual experiment, there may have been portions of the electromagnetic calorimeter

that were not functioning properly, which could be shower maximum detector strips, anode wires,

towers or in extreme cases entire modules. It is important to identify any issues before a final data

set is collected that will be used to perform the analysis.

Figure 5.1 is a typical tower energy distribution taken from the st-gamma data. The large fluctua-

tions above 20 GeV can be removed by isolating towers that were not functioning properly at the

time of data acquisition. There are several methods of identifying noisy towers, some are more

effective than others. The method used for this analysis was to fit an exponential curve to each

individual tower’s energy spectra across the entire st-gamma data set. The χ2 from the fit was then

plotted for each tower. The χ2 distribution should be flat for all but non functioning towers. Any

tower where the χ2 did not lie within errors to the fit of the χ2 distribution was further investigated

before removal by considering the number of hits and mean ET . The final decision was made on a

tower by tower basis determined by the author’s own judgment.

From figure 5.2 there are clear differences between the spectra for functioning towers and non-

functioning towers. With reference to the statistics legend in figures 5.2(a) and 5.2(b), it can be

seen that the number of hits and the mean ET vary significantly between a functioning tower an a
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(a) An example bad tower. (b) An example good tower

Figure 5.2: Identifying bad towers to eliminate false triggers. Bad towers usually have elevated hit
numbers as well as higher χ2 and mean terms.

non-functioning tower.

The final step to identifying that a neutral trigger has been detected is to perform a charged track

veto on the candidate towers. From the track information, generated from TPC data, a position

on the electromagnetic calorimeter can be calculated. From this position the corresponding tower

can be identified and the track associated with an electromagnetic calorimeter tower. By excluding

towers that have an associated TPC track, triggers that originated from charged particles can be

eliminated from the trigger sample. However, simply eliminating towers with associated charged

tracks can be too restrictive an approach especially in central Au + Au events where the multiplicity

is of the order of the number of calorimeter towers.

The aim of the charged track veto is to eliminate towers where most of the energy deposited was

due to one or more charged particles. The charged track veto was therefore set at one third the

total tower energy. For example a 6 GeV tower would be rejected if a track with pT greater than

2 GeV/c was associated with that tower. Having performed the charged track veto, only a small

proportion of events were lost. It was found whilst performing the dE
dx analysis, which is covered

in section 5.3, the vast majority of rejected towers were from high momentum electrons, most

probably produced from the decay of D and B mesons.
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5.2.1 Associated track selection

In the same way that trigger candidates must pass selection criteria, associated TPC tracks must

also. The selection process is again physics goal determined but without over restricting the selec-

tion as to diminish available statistics beyond a useable quantity. The selected tracks are used in

this analysis for three main purposes: to identify the jet or background signals, to identify the two

particle correlation spectra and to veto charged triggers from the trigger selection process.

The pT threshold for associated tracks was set at a minimum of 2 GeV/c and a maximum of 6

GeV/c. The tracks with pT between 2-3 GeV/c have been included for the charged track veto and

will not be used in the correlation as these tracks could not be identified using the dE
dx method as

the energy loss is too similar for each particle species. The resolution of the dE
dx value assigned to

each track is sensitive to the number of pad rows the track crosses in the TPC. Therefore setting a

high threshold on the number of pad rows crossed by each track would be the most effective option

to improve resolution.

Having disregarded the top 30% by energy of TPC cluster hits, due to the long ∆E tail at high ∆E

of the hit energy distribution, the maximum number of available hits is limited to 30. Figure 5.3

shows how the distribution of hits used for dE
dx is skewed towards the higher end of the scale. This

is primarily caused by introducing a good track cut that only selects tracks that have registered

greater than 20 hits in the TPC. There are some tracks that have used as few as 5 hits to calculate

the track dE
dx . The reason for using so few tracks is because the dE

dx algorithm only uses isolated

charge clusters disregarding any hits that have merged clusters from one or more tracks.

During the initial investigations using dE
dx to identify particles, no constraint was imposed on the

number of hits used to calculate the track dE
dx as the majority of tracks had high numbers of hits.

However, as the identification method was developed it was discovered that by disregarding the

less accurate tracks, which used fewer hits, the widths of the Gaussian distributions used to fit the

dE
dx data decreased and thus the resolution improved. The good track cut was then altered to include

a threshold for the acceptable number of hits used for calculating dE
dx . The limit was eventually set

at 20 hits as this did not hamper the statistics to the extent that fits were not able to be performed
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Figure 5.3: Number of TPC cluster hits used to calculate dE
dx . Only tracks that used greater than

20 cluster hits to calculate dE
dx were selected to improve dE

dx resolution without severely reducing
statistics

but did show a significant improvement in resolution.

The geometrical constraints on the tracks limited the track selection to the mid-pseudorapidity

range where the modulus of the pseudorapidity is less than 1. This selection was made as tracks

beyond this pseudorapidity are unlikely to be attributed to jets triggered on the barrel electromag-

netic calorimeter thus reducing the background created from trigger non associated particle pairs.

As table 5.1 indicates, the d + Au data set and Au + Au data sets should be statistically similar.

Figure 5.4 shows how the number of tracks in the d + Au data set is more than three times the

number in central Au + Au at pT below 3.5 GeV/c yet is almost an order of magnitude higher

above 5 GeV/c. The major factor contributing to this difference is the suppression of high pT

particles in central Au + Au.

5.3 Energy Loss Particle Identification for Jets

In section 4.6.1 the ability to identify particles with the TPC was discussed using particle energy

loss data. The remainder of this chapter will outline the steps that were taken to develop the particle

identification method used in this analysis.
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Figure 5.4: Number of tracks in each pT bin for central and peripheral Au + Au collisions and d
+ Au collisions at

√
sNN = 200 GeV. The increased number of tracks in the d + Au data cannot be

completely attributed to a larger number of events collected and high pT suppression. A further
trigger bias can also be considered as there is no π0 suppression.

In the previous chapter the two particle correlation method was discussed as the chosen tool for

jet finding. The correlation will identify three regions in ∆φ that correspond to the trigger jet, the

away side jet and the background where no jet signal is observed. Once these regions have been

identified, the dE
dx distributions can be obtained for each region separately. Treating each region

separately does slightly complicate extracting accurate particle yields. The first issue is that two

particle correlations do not produce a pure jet sample but create a jet signal on top of a background

built up from the underlying event. This background will have to be subtracted in order to produce

accurate jet spectra. The correlation does not preserve individual track information therefore the

subtraction must be performed after the dE
dx data has been analysed. In order to overcome this issue,

the dE
dx data for the background part of the correlation can be used to achieve accurate hadron ratios

for the background within the jet regions assuming that the background has a uniform hadron

composition across all ∆φ .

The second obstacle is identifying charged kaons. In previous particle identification studies at

STAR, the kaons were constrained using K0
S spectra [109]. In order to obtain the K0

S yields within

each pT range, a separate correlation would need to be performed between the gamma trigger and

K0
S candidates in order to establish the jet profile for K0

S that could then be split into the three

regions in ∆φ . Strange hadrons have been used in two particle correlations where the strange

hadron has been used as the trigger [110]. There has also been a study to ascertain the Λ/K0
S ratio

in jets at low pT [111]. Yet inclusive strange hadron spectra are usually limited to the intermediate
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pT region below pT = 5 GeV/c [112]. In this analysis it was found that there were insufficient

statistics within the pT region 3-6 GeV/c to produced two particle correlations with K0
S . Therefore

the charged kaons will need to be identified as part of the fit to the dE
dx data.

5.3.1 Calibrating the energy loss data

Before the dE
dx data could be calibrated for the 2007 Au + Au run, the data had to be separated into

central events and peripheral events. The centrality definitions for this analysis were taken from

the 2004 Au + Au minimum bias data [107]. The exact reference multiplicity, the number of tracks

with pseudo-rapidity |η | less than 0.5, that corresponds to the different centrality percentiles differs

with each trigger, as each trigger may have a bias towards a particular centrality. For example, the

st-gamma dataset, which is designed to trigger on jets, is likely to be bias toward central events

where the number of binary collisions is higher. The bias towards central events can be seen in

figure 5.5 where, unlike in the minimum bias data seen in figure 4.6, the reference multiplicity

distribution is skewed towards the more central events. In fact, the accepted central/peripheral

event ratio is≈ 2.5, which may result in the analysis of peripheral events being limited to lower pT

than central events due to statistics. There is the possibility of increasing the reference multiplicity

range for peripheral events however this is likely to dilute any hadron ratio differences between

central and peripheral as the peripheral events selection will contain higher multiplicity events.

A fit to the dE
dx data is performed using the Bichsel predictions as the mean values of an eight

Gaussian fit (proton, kaon, electron and pion both negative and positive). The preliminary fit

function consists of seventeen parameters of which six are fixed. The fixed parameters are the

separations between the electron mean dE
dx and those corresponding to the mean of each other

particle as set by the Bichsel predictions. The remaining eleven parameters are the electron and

positron peak positions, the peaks’ width, σ , the π+ and π− yields, the p/π+ and p̄/π− ratios, the

e+/π+ and e−/π− ratios, and the K+/π+ and K−/π− ratios. This fit will serve as the benchmark

to gauge future alterations to the fit function.

The use of the electron dE
dx peak position to calibrate the dE

dx data has been used before in STAR
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Figure 5.5: Reference multiplicity distribution for st-gamma data. The green region corresponds
to the 40-80% centrality definition from 2004 Au + Au minimum bias data, while the red region
corresponds to 0-10%.

[109]. A sample of charged triggers, earlier eliminated from the data by the neutral trigger selec-

tion, was added to the data. The motivation behind this strategy is that it should allow an electron

peak to emerge to the right of the pion peak that can be used to calibrate the other particle peak

positions.

It is important not to lose sight of the physics when adjusting the fit function as too much freedom

may result in a better fit but not portray the true particle contributions. A few simple physics

checks can be performed after each fit cycle. Firstly, there should not be an excess of anti-matter

over matter, thus p/p̄≥ 1, K+/K− ≥ 1. As charged pions are either ud̄ (π+) or dū (π−) there may

be a slight preference for negative pion production as the colliding nuclei contain fewer protons

(uud) than neutrons (udd). Therefore it is expect that the π+/π− ratio is consistent or less than

unity.

5.3.2 Calibrating the energy loss data from peripheral Au + Au collisions

Although the peripheral data contain fewer statistics than the central collisions, due to the smaller

system size, the data are fit friendly. This is to say that the shape of the dE
dx distribution represents
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Figure 5.6: Fit, consisting of eight Gaussians, to dE
dx data from peripheral Au + Au collisions, using

calibrated particle dE
dx peak positions determined by the Bichsel prediction. The proton peaks are

in red, the pion peaks in blue, the kaon peaks in pink and the electron peaks in green.

more closely a peak (pions) with two shoulders (protons/kaons and electrons), which allows the fit

function to describe accurately the data using Gaussians. At higher pT intervals the jet contribution

accounts for a greater proportion of the particle spectra therefore the number of tracks becomes

more dependent on the number of selected events instead of the centrality of the collision. Figure

5.4 illustrates how the number of tracks depends on pT for the two different system sizes. It is

clear to see that the difference in statistics between central and peripheral collisions diminishes as

pT increases.

Figure 5.6 shows the fit to peripheral Au + Au dE
dx data using the Bichsel function predictions for

the different particles. The dE
dx data has been split in to pT bins of 0.5 GeV/c in the range 3-6

GeV/c. The mean momentum of the tracks in each pT bin was used to acquire the corresponding

Bichsel prediction for each hadron species. The positive and negative tracks have been arbitrarily

separated by displacing the negative tracks by 0.5 to the right of the positive tracks.

84



5.3. ENERGY LOSS PARTICLE IDENTIFICATION FOR JETS

Table 5.2: Fit to energy loss data statistics table from peripheral Au + Au collisions.

pT Range χ2 p/π+ p̄/π− K+/π+ K−/π− π+/π−

3-3.5 1.91 0.22 ± 0.03 0.16 ± 0.03 0.48 ± 0.05 0.33 ± 0.04 1.02 ± 0.02
3.5-4 1.00 0.23 ± 0.03 0.12 ± 0.02 0.36 ± 0.05 0.23 ± 0.04 0.96 ± 0.03
4-4.5 1.32 0.18 ± 0.03 0.10 ± 0.02 0.37 ± 0.05 0.23 ± 0.04 0.94 ± 0.03
4.5-5 1.15 0.12 ± 0.03 0.05 ± 0.02 0.33 ± 0.05 0.24 ± 0.05 1.01 ± 0.04
5-5.5 0.69 0.13 ± 0.04 0.12 ± 0.03 0.35 ± 0.06 0.21 ± 0.05 0.98 ± 0.05
5.5-6 1.25 0.17 ± 0.04 0.03 ± 0.02 0.31 ± 0.06 0.28 ± 0.06 1.04 ± 0.06

The fit has proved successful and all eight particles have been found to contribute to the total dE
dx

distribution as would be expected. Furthermore the simple physics checks suggested in section

5.3.1 have been achieved by the fit as shown in table 5.2. The conclusion is that the Bichsel

predictions do accurately describe the peripheral Au + Au data, based purely on the results shown

in figure 5.6, as the electron peak has not displaced, within errors, from the original position set by

the Bichsel prediction in all pT bins.

5.3.3 Calibrating the energy loss data from central Au + Au collisions

The fits in figure 5.7 use the electron calibration method, described in the previous section, and do

tend to fit the data very well. All of the physics tests are matched save for an exception in pT bin

4-4.5 GeV/c where the p/p̄ ratio is less than unity.

The electron calibrated dE
dx curve is shown in figure 5.8 and is consistent with a momentum inde-

pendent shift from the Bichsel prediction. As the right hand side of the dE
dx distribution in figure

5.7 appears to be accurately described by the current pion and electron positions, it is concluded

that the pion peak is correctly calibrated using the electron calibration method.

A pure sample of charged pions would be accessible from the decay of K0
S → π+π−. Yet with the

current statistics, it is not possible to produce meaningful K0
S invariant mass peaks up to a pT of

12 GeV/c, which would be required to obtain a sample of charged pions with a pT of 6 GeV/c. In

the final version of the fit function, the pion peak position will be allowed the flexibility of a 1σ

deviation from the Bichsel e− π separation to account for any possible shift from the predicted
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Figure 5.7: Fit to dE
dx data from central Au + Au collisions, using the calibrated electron dE

dx curve
and the Bichsel function spacings.

e−π separation.

The kaon peak is dominating the left hand side where the proton peak is expected to dominate due

to baryon enhancement. In order to calibrate the proton peak, the Λ daughter proton candidates

were fit using a function that has a fixed pion peak position, where the peak position is taken from

figure 5.7, a free peak width and a free proton peak position that is initially set at the Bichsel

predicted value.

The results of the fit are shown in figure 5.9. The left hand panel of figure 5.10 compares the

p−π peak separation according to the Bichsel function with the separation resulting from the Λ

daughter fit. The right hand panel that shows by what value in dE
dx has the pion to proton separation

deviated from the prediction provided by the Bichsel function. The deviation can be described

using a momentum independent constant, which simplifies describing the proton dE
dx peak position.

This result indicates that the p−π peak separation in central Au + Au is smaller than that expected

from the Bichsel prediction, which is in contrast to what was found in peripheral Au + Au.
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Figure 5.8: Fit to calibrated electron dE
dx data from central Au + Au collisions. The left figure

shows how the calibrated electron dE
dx curve (black) compares to the Bichsel curve (green). The

right figure is the difference between the calibrated electron points and the Bichsel prediction.

Figure 5.9: Fit to Λ proton daughters dE
dx data from central Au + Au collisions. Two Gaussian fit

consisted of six parameters of which five were free parameters. The mean of each Gaussian was
set according to the Bichsel prediction calibrated by the electron deviation. Only the pion mean
was fixed to these values while the proton mean as a free parameter.
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Figure 5.10: Results of a fit to the dE
dx data of Λ daughter proton candidates where the proton

peak position was a free parameter and the pion peak position was fixed according to the electron
calibration. The left panel compares the Bichsel predicted pion to proton separation in dE

dx (green
points) to the separation produced as a result of the fit. The right figure is the deviation from the
Bichsel separation exhibited by the proton peak position.

5.3.4 Kaon Contribution Constraints

Previous studies have used the yield of K0
s mesons to limit the kaon contribution [109]. An al-

ternative method was developed during and after the work presented in this thesis that used the

deviation of the proton, pion and electron from the Bichsel positions to calculate the most likely

kaon position [113]. The method used in this analysis estimated that the kaon deviation from the

Bichsel prediction would be between that of the electron deviation and the proton deviation, in-

cluding the error associated with each deviation. Therefore, the kaon peak position was set as the

average deviation with the upper limit set as the proton deviation and the lower limit set as the

electron deviation. The electron and proton peak positions are bound by a 1σ deviation in the

final fit function. Larger deviations, 2σ , or 3σ , allowed too much freedom in the fit and could not

produce realistic results that accounted for all four particle species.

The fit performed in figure 5.11 has managed to fit the dE
dx data quite well using calibrated proton

and electron peak positions. The individual deviations from the Bichsel predictions are shown

88



5.3. ENERGY LOSS PARTICLE IDENTIFICATION FOR JETS

Figure 5.11: Fit, consisting of eight Gaussians, to dE
dx data from central Au + Au collisions, using

calibrated proton and electron dE
dx peak deviations from the Bichsel prediction and a constrained

kaon peak position.

in figure 5.12 where the electron deviation is shown in 5.12(a), the pion deviation is 5.12(b), the

proton deviation is 5.12(c) and the kaon deviation is 5.12(d). It is also plausible that a flat line

could also describe the proton and pion data, therefore a pT independent shift will be used to set

the peak positions. The peak positions will be allowed to vary within a deviation of 1σ when the

fit is performed on the correlated data, where the correlation is separated into near side jet, away

side jet and background in ∆φ .

5.3.5 Calibrating the d + Au dE
dx data

The d + Au dE
dx data was calibrated using the same method as the peripheral Au + Au data. As

was found with the peripheral Au + Au data, the Bichsel predictions accurately predicted the peak

positions for all the particle species. The fit shown in figure 5.13 supports the conclusion that,
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(a) (b)

(c) (d)

Figure 5.12: Peak position of particle species after implementing the electron deviation from the
Bichsel prediction, the proton deviation, and constraining the kaon peak position between the
electron and proton deviations. In green are the e± deviations, blue the π± deviations, red the p±

deviations and pink the K± deviations.

as was found with the peripheral Au + Au data, all particle species are aligned with the Bichsel

predictions.

5.3.6 Inclusive charged hadron ratios

The central and peripheral Au + Au inclusive hadron ratios of p/ p̄, K+/K− and π+/π− have

been calculated in figure 5.14 for pT 3-6 GeV/c independent of the two particle correlation. The

two figures show the ratios for central and peripheral collisions from top to bottom respectively.

The pion trend is the most precise due to greater statistics and less overlapping of the pion dE
dx

range with the ranges of other hadrons. The π+/π− ratio is consistent with unity, which provides

a consistency check for the pion yields extracted from the dE
dx fit. The K+/K− ratio, with the

exception with the first bin of the central data, is greater or consistent with unity. In all pt bins,

p/p̄ ratio is also greater or consistent with unity however there is far larger uncertainty. The
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Figure 5.13: Fit, consisting of eight Gaussians, to dE
dx data from d + Au collisions, using the Bichsel

predictions to fix the peak positions of all particle species.
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Figure 5.14: Inclusive h+/h− hadron ratios Au + Au. Figure (a) shows the hadron ratios from cen-
tral Au + Au collisions while figure (b) shows the hadron ratios from peripheral Au + Au collisions.
Missing data points are caused due to the marker value not being on the graph scale even though
the error bars would be present.

missing points, 5th bin in central collisions and 4th and 6th bins in peripheral collisions, are all

above the scale of the plot with large errors consistent with unity. These points are missing due to

poor statistics hampering the quality of the fit. For this reason, positive and negative particles will

be combined in the correlation analysis.

As with the Au + Au data, the hadron ratios of p/p̄, K+/K− and π+/π− have been calculated for

d+ Au events and are shown in figure 5.15. The errors are smaller than those seen in the Au + Au

data as the d + Au data set is statistically stronger than the central or peripheral data sets, shown

in figure 5.4, and contain dE
dx distributions dominated by pions that are easier to fit. The inclusive

ratios for all three hadrons appear to be pT independent. However there is a suggestion that the

p/p̄ ratio is larger above 5 GeV/c yet the large errors are consistent with the other data points.
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Figure 5.15: Inclusive h+/h− hadron ratios d + Au. The inclusive ratios are calculated for pT from
3 to 6 GeV/c.
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Chapter 6

ANALYSIS

This chapter is set out in four parts. The first part consists of a description of the background

subtraction method followed by the two particle correlations for unidentified neutral triggers with

unidentified charged tracks from all three data sets. The second part includes the analysis of the

identified charged tracks, using the dE
dx analysis method, for three regions (near side jet, away side

jet and background) in azimuth. The ratio of hadron species with respect to charged pions was

calculated and compared for the three regions.

The third part of this chapter looks at identified neutral trigger events in central Au + Au. The cor-

relations were made using only events that satisfy the single photon trigger criteria using the barrel

electromagnetic calorimeter shower maximum detector data. The single photon trigger should

minimise the π0→ γγ contamination of the γ-jet event selection. The hadron ratios from identified

neutral trigger central events will then be compared with the hadron ratios from peripheral Au +

Au and d + Au unidentified neutral trigger events.

The final part of this chapter compares the hadron ratio results from all data sets with hadron

ratios taken from Monte Carlo generated p + p events. The p +p events selected used π0 triggers

with a pT greater than 6 GeV/c within the mid-rapidity range of the STAR barrel electromagnetic

calorimeter.
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6.1 Extracting particle jet yields from energy loss data using

two particle correlations

In section 4.7.1, the correlation signal was described as consisting of a dijet signal and a back-

ground produced from correlations that include particles created in the underlying event, which

are not associated with the dijet. In the previous chapter, the method of identifying the species of

the charged particles in the event was described.

By combining the two methods, the particle yields can be determined for both jets and background

as a function of pT . The yield due to the uncorrelated background will need to be subtracted in

order to obtain the jet yield. This will allow a comparison of the pT spectra of p±, π± and K±

from jets and the underlying event, as well as particle ratios as a function of pT .

6.1.1 Background subtraction

In order to determine the pT spectrum of p±, π± and K± correlated with jets, the yields, as a

function of pT , need to be extracted. To establish the background pT spectrum, a pure background

source must be collected and the dE
dx data analysed.

Fortunately this is not a difficult task due to the nature of the data in the correlation. Both the

trigger pT (> 6 GeV/c) and the associated track pT (3-6 GeV/c) are relatively high for jet studies

performed at STAR using two particle correlations. The correlations performed in this analysis

produced tall narrow jet peaks that can easily be distinguished from the background that lies be-

tween the jet peaks in ∆φ .

To identify the background regions, a fit was performed to the two particle correlations that con-

tained a background and jet contribution. The fit function was then separated into three separate

functions where the jet contributions were separated from the background contribution.

A simple algorithm was implemented that returned the values where the jet and background func-

tions crossed. These cross over points were classified as the jet-background boundaries. The
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PARTICLE CORRELATIONS

Figure 6.1: Two particle ∆φ correlation with triggered EMC towers with ET > 6 GeV and associ-
ated charged tracks with 3.0 < pT < 3.5 GeV/c using central Au + Au data at

√
sNN = 200 GeV

.

boundaries essentially determined the jet width in ∆φ .

In figure 6.1, an example correlation is shown that has been performed using central Au + Au

data at
√

sNN = 200 GeV with a BEMC tower trigger threshold of ET > 6 GeV and an associated

track pT between 3.0 and 3.5 GeV/c. The distribution has been separated into the dijet signal

(red and green) and the background (blue). What was discovered during this analysis is that, for

the st-gamma data set at the very least, the anisotropic flow, v2, contribution to the background

is negligible. A flow contribution to the background only exists if both the trigger and associated

particles are not from jets. With a jet trigger ET threshold of 6 GeV, the majority of trigger particles

appear to be from true jet events. Therefore the background consists mainly of tracks uncorrelated

with the trigger (either a leading π0 or direct photon). The background can therefore be treated as

uniform in ∆φ , which allows for a more simple approach to the background subtraction.

By identifying the background regions away from the jet peaks, the background subtraction method

also assumes that the background population is uniform in ∆φ . Once the spectra of the background

regions has been established, using the dE
dx data in the designated ∆φ background regions, the

track density (number of tracks per radian) can be used to assign the quantity of each particle that

resides in the background below the jet peak. The two particle correlations have been separated

into different regions as shown schematically in figure 6.2. The objective of the subtraction is to
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Figure 6.2: Allocation of regions in ∆φ that are required to calculate the background, by hadron,
to be subtracted from the jet signal.

remove B1 and B2 from y1 and y2 respectively where y denotes the yield from a jet region of ∆φ .

Equation 6.1 revels how the subtraction can be performed for each individual hadron where h is

the hadron, n is the jet region and td is the track density.

Jh
n = yh

n−{∆φnBtd
3 (

Bh
3

Ball
3

)} (6.1)

The above equation shall be used to extract the jet spectra for pions, kaons and protons from the

two particle correlations in the three systems, central and peripheral Au + Au and d + Au. The

ratios K±/π± and p±/π± shall be calculated and compared for each system.

6.2 Unidentified ∆φ Correlations

The correlations for peripheral Au + Au collisions are shown in figure 6.3 along with the integrated

jet yields in figure 6.4. The jet yields were extracted using a mixed event background subtraction

method using two dimensional particle correlations in azimuth and pseudorapidity as mentioned

in section 4.7.2 and described in [107]. The resulting corrected two dimensional correlation was

then projected onto the azimuthal axis where the near and away side peaks were then integrated
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Figure 6.3: Unidentified neutral trigger correlations with unidentified charged tracks from periph-
eral Au + Au events. From (a) to (f) the associated pT is increasing in 0.5 GeV/c intervals from
3-3.5 GeV/c to 5.5-6 GeV/c. The red, green and blue markers indicate the near side jet, away side
jet and background regions in azimuth respectively.

to ascertain the yields. This is a different subtraction method to the one that will be described in

section 6.1.1 as it is only being used to determine the unidentified hadron yields.

The correlations show clear dijet signals in every pT bin. The near side peak (situated at ∆φ = 0)

is narrower than the away side peak (situated at ∆φ = π). This is caused due to the trigger bias

that the near side peak always contains the trigger particle, which preferentially selects the jet with

less attenuation in the medium and/or a harder fragmentation.The near side peak narrows as the

associated pT increases which indicates that the highest momentum associate particles are found

closer to the jet axis. Incidentally, had all the neutral triggers been γ triggers there would not be

any near side correlation. The near side correlation is therefore due to jets with a leading π0.

The correlations for central Au + Au are shown in figure 6.5. The away side jet is clearly sup-

pressed, due to high pT attenuation in the medium, when compared to the away side jet from
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Figure 6.4: The left figure shows near side(NS) and away side (AS) yields in peripheral Au + Au
collisions for associated tracks with 3 < pT < 6 GeV/c. The right figure shows the ratio of the
away side yield to the near side yield. The ratio is approximately constant across the pT range.

peripheral events. The contribution from the uncorrelated background is also far higher than in

peripheral events as expected due to the higher event multiplicity. For example, in the pT bin 3-3.5

GeV/c, the level of the background is a quarter of the height of the near side peak in peripheral

collisions while the same comparison in central collisions reveals that the background is slightly

greater than the height of the near side peak.

The background was then subtracted in the same way as described for peripheral Au + Au to

determine the jet yields. Figure 6.6 reveals the jet yields per triggered event for the near side and

away side and also their ratio. The extent of the away side suppression in central Au + Au is clearly

noticeable when comparing the the away side to near side jet yield ratios from central collisions to

peripheral collisions where the peripheral ratio is roughly twice as large.

The d +Au correlations (not shown), were found to be very similar to those from peripheral Au

+ Au. In d +Au, the away side to near side jet yield ratio was slightly higher than in peripheral

Au+Au indicating that there is a small amount of attenuation in the peripheral events .
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Figure 6.5: Unidentified neutral trigger correlations with unidentified charged tracks from central
Au + Au events. From (a) to (f) the associated pT is increasing in 0.5 GeV/c intervals from 3-3.5
GeV/c to 5.5-6 GeV/c. The red, green and blue markers indicate the near side jet, away side jet
and background regions in azimuth respectively.

Figure 6.6: The left figure shows near side (NS) and away side (AS) yields in central Au + Au
collisions for associated tracks with 3 < pT < 6 GeV/c. The right figure shows the ratio of the
away side yield to the near side yield. The ratio is approximately constant across the pT range.
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TRIGGERED ∆φ CORRELATIONS

6.3 Identified Hadron Ratios From Unidentified Neutral En-

ergy Triggered ∆φ Correlations

The dE
dx data from the correlations in the previous section were analysed using the calibrated Bichsel

functions for charged pions, kaons, electrons and protons. Positive and negative hadrons were

combined to maximise the statistics that had been reduced having separated the data into three

regions.

6.3.1 Charged hadron ratios Au + Au

The hadron ratios with respect to pions, h±/π± have been calculated for each of the three regions

of ∆φ , encompassing the near side jet, away side jet and uncorrelated background, for both central

and peripheral collisions. The p±/π± ratios from central collisions in figure 6.7(a), which have

not had the uncorrelated background subtracted, clearly show that there is a proton ∆φ dependency

with the highest ratio in the background regions and the lowest ratio in the near side region.

The uncorrected p±/π± ratio in peripheral collisions, shown in figure 6.7(b), is much lower than in

central collisions. This indicates that there is a baryon enhancement in central Au + Au collisions

as was found in the inclusive p/π ratio from the 2004 Au + Au data [39]. As the contribution

from the uncorrelated background is smaller in peripheral Au + Au than central Au + Au as well as

diminishing with pT , there are large errors associated with the fit to the background ∆φ region.

Figure 6.8 reveals how the uncorrected K±/π± ratio is approximately pT independent unlike the

p±/π± ratio. There is perhaps a slight dependence on ∆φ region, which can be seen in both central

and peripheral events, where the K±/π± ratio is greater in the away side jet than the near side jet.

The away side K±/π± ratio not only is greater than the near side ratio in central collisions, but is

also comparable to the background ratio.

In order to remove the background contribution from the jet ∆φ regions, the average track density

must be calculated so that the number of pions, kaons and protons are determined and subtracted
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Figure 6.7: Uncorrected p±/π± ratio Au + Au. Figure (a) shows the p±/π± ratio from central Au
+ Au for associated charged tracks with pT from 3 to 6 GeV/c. Figure (b) shows the p±/π± ratio
from peripheral Au + Au.

Figure 6.8: Uncorrected K±/π± ratio Au + Au. Figure (a) shows the K±/π± ratio from central Au
+ Au for associated charged tracks with pT from 3 to 6 GeV/c. Figure (b) shows the K±/π± ratio
from peripheral Au + Au.
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Figure 6.9: Au + Au track density after subtracting track density associated with the background.
The corrected track densities for central Au + Au are in figure (a) for associated charged tracks
with pT from 3 to 6 GeV/c. The corrected track densities for peripheral Au + Au are in figure (b).

separately. The track density can then be recalculated for the two jet regions to compare the

density trends of each region. Figure 6.9 is the result of the track density correction in Au + Au.

The background has the highest track density in central events up to a pT of 4 GeV/c. The density

of the background region is increased due to the trigger efficiency. No dijet correlation signal is

present when events are selected where the trigger is a thermal particle from the underlying event.

The track density decreases in the background with a steeper slope indicating a softer production

mechanism than the jet regions. The track densities of the near and away side jet regions are

consistent in peripheral collisions (figure 6.9(b)) while in central collisions (figure 6.9(b)), the

away side track density has been suppressed by the greater attenuation experienced in the medium

by the away side jet.

6.3.2 Jet hadron yields Au + Au

The hadron yields for pions, protons and kaons were calculated for the three ∆φ regions in each pT

bin for central and peripheral collisions. Figures 6.10, 6.11 and 6.12 display how the jet regions

compare to the background region before background subtraction. The background region yields
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Figure 6.10: Charged pion yields in the ∆φ jet regions from central Au + Au collisions. Figures
(a) and (c) show the central Au + Au charged pion yields for the near side and away side jets
respectively. Figures (b) and (d) show the peripheral Au + Au charged pion yields for the near side
and away side jets respectively.

have been scaled to cover the same ∆φ as the jets. In each figure, the four panels a, b, c, and d

represent central near side, peripheral near side, central away side and peripheral away side jets

respectively.

The pion figure (figure 6.10), shows clearly that the background yield slope is steeper than the

jet yield slope from 3-6 GeV/c. This indicates that the jet yield comprises of a hard pT spectra.

The background yield is of the same order as the jet yield in central collisions while in peripheral

collisions it falls to an order of magnitude smaller after the 4-4.5 GeV/c bin.

The proton yields from figure 6.11 and the kaon yields from figure 6.12 should be examined as a

pair. This is due to the yields being closely linked as a fluctuation in the fit function for either of

the two hadrons is very likely to cause a fluctuation in the other particle’s yield.

The proton data contain fewer statistics than the pion data and illustrate the difficulty of subtracting

the large background. In central collisions, the background yield is very similar to the jet yields

and is in fact the same within errors in all pT bins of the central Au + Au data set. Only the final

two points of the away side data have a corrected proton yield that is not consistent with zero.
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Figure 6.11: Combined p+ p̄ yields in the ∆φ jet regions from central Au + Au collisions. Figures
(a) and (c) show the central Au + Au p+ p̄ yields for the near side and away side jets respectively.
Figures (b) and (d) show the peripheral Au + Au p+ p̄ yields for the near side and away side jets
respectively.

The kaon yields show the greatest increase above the background in the final two pT bins of the

near side yields. There is also a slight dip in the 5-5.5 GeV/c bin of the away side kaon yield

suggesting that the away side proton yield in this bin may be artificially high caused by a poor fit.

The peripheral proton yields are slightly unstable on the near side yields as the fit has struggled to

accurately account for what is clearly a small jet contribution to the overall dE
dx data. The away side

peripheral proton yield appears more consistent, which is probably caused by a more accurately

described kaon yield that accounts for a larger proportion of the dE
dx data than in the near side

region.

The main observation from these yield plots is that the background correction plays a critical

part in determining the true jet hadron composition as the background yields are significant. The

corrected yields will follow a review of the d + Au uncorrected hadron ratios.
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Figure 6.12: Charged kaon yields in the ∆φ jet regions from central Au + Au collisions. Figures
(a) and (c) show the central Au + Au charged kaon yields for the near side and away side jets
respectively. Figures (b) and (d) show the peripheral Au + Au charged kaon yields for the near side
and away side jets respectively.

6.3.3 Charged hadron ratios d + Au

The hadron ratio calculations determined from the d + Au data set have very small errors that make

distinguishing the differences between near and away side jets far easier. The p±/π± ratio without

the background subtraction, seen here in figure 6.13, has been found to be pT independent with the

away side p±/π± ratio constantly greater than the near side ratio.

Figure 6.14 shows that the K±/π± ratio, without the background subtraction, is similar to that seen

in peripheral Au + Au where in both jet regions the ratio appears to be independent of pT and the

away side ratio is greater than that calculated for the near side.

Hard scattered particles in d +Au are not expected to experience any significant attenuation in the

aftermath of the collision. This expectation is illustrated in figure 6.15 where the track density of

the away side jet is greater than that of the near side across the entire pT range.
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Figure 6.13: Uncorrected p±/π± ratio d + Au. The p±/π± ratio is calculated for associated
charged tracks with pT between 3-6 GeV/c.

Figure 6.14: Uncorrected K±/π± ratio d + Au. The K±/π± ratio is calculated for associated
charged tracks with pT between 3-6 GeV/c.
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Figure 6.15: Background corrected track density d + Au calculated for associated charged tracks
with pT between 3-6 GeV/c.

6.3.4 Jet hadron yields d + Au

The hadron yields for pions, protons and kaons were calculated for the three ∆φ regions in each

pT bin (same as for Au + Au) in d + Au collisions. Figures 6.16, 6.17 and 6.18 display how the jet

regions compare to the background region before background subtraction. The background yield

has been scaled to cover the same ∆φ as the jets.

In figure 6.16, the background pion yields are an order of magnitude smaller than the jet pion

yields in both near and away side jets. There is a large error associated with the fifth pT bin that

has been caused by a poor fit, which failed to fit the electron and proton contributions. This bin is

not shown in figure 6.17 as zero is not on a logarithmic scale.

There link between the proton yields from figure 6.17 and the kaon yields from figure 6.18 does

not appear to be as strong as that seen in central Au + Au events. Still the slight fluctuations seen

in the kaon yields appear to match those seen in the proton yields.

It was shown in central Au + Au events that the background hadron composition was baryon rich.

The background in d + Au events is lower due to to a higher jet to background ratio but there is also

no coalescence effect from the hadronisation of a QGP phase. The background in d + Au events is
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Figure 6.16: Charged pion yields in the ∆φ jet regions from central d + Au collisions. Figure (a)
shows the charged pion yields for the near side jet and figure (b) shows the charged pion yields for
the away side jet.

also lower than in peripheral Au + Au. There is no expected baryon enhancement in peripheral Au

+ Au events, although this is inconclusive when considering the p±/π± ratio of the background in

figure 6.7(b), therefore the higher background can be attributed to a higher event track density.

The away side proton and kaon yields both follow an exponential curve, allowing for fluctuations,

except for the final proton bin, which is clearly elevated without a partnering dip in the final kaon

bin. This appears to be further evidence for identified leading baryons in the away side jet.

The yield plots for d + Au go in tandem with the observations made in figure 6.15. Namely that

the away side jet is more densely packed with particles than the near side jet and produces a larger

jet cone. As the leading particle in the near side is always a neutral hadron or photon, this leads

to a charged leading particle bias on the away side as the away side jet has no leading particle

constraints. Furthermore, as the away side jet must have a leading particle lower in pT than the

near side jet, there is an increased probability that the away side leading particle has a larger mass

than that of the near side.
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Figure 6.17: p+ p̄ in the ∆φ jet regions from central d + Au collisions. Figure (a) shows the p+ p̄
yields for the near side jet and figure (b) shows the p+ p̄ yields for the away side jet.

Figure 6.18: Charged kaon yields in the ∆φ jet regions from central d + Au collisions. Figure (a)
shows the charged kaon yields for the near side jet and figure (b) shows the charged kaon yields
for the away side jet.
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6.3.5 Corrected jet hadron yields Au + Au and d + Au

Before continuing with the results of the corrected jet hadron yields, it is important to state that the

background subtraction method was not implemented for peripheral Au + Au or d + Au. While the

background subtraction is essential in central Au + Au due to baryon enhancement, the background

subtraction for peripheral Au + Au and d + Au collisions did not appear to contribute any significant

modification to the hadron ratios.

This can be explained by considering that there were smaller background yields with larger errors

extracted from the peripheral collisions than the central collisions. Furthermore, the peripheral Au

+ Au hadron ratios in the near and away side jet regions are consistent to those in the background

region considering the large errors on the background ratios. Similarly for d + Au, the background

hadron ratios were also very close to those in the jet regions. There was also the one pT bin that

could not be used to correct the jet hadron yields as the background fit had failed to produce a

meaningful result.

The hadron ratios in central Au + Au were background corrected and then compared to the uncor-

rected hadron ratios of peripheral Au + Au and d + Au. Figure 6.19 compares the p±/π± ratios

for the three system sizes. The near side p±/π± ratio is now consistent across all system sizes

meaning that the corrected central ratio is independent of pT . The away side p±/π± ratio compar-

ison is less conclusive due to the large uncertainty on the central Au + Au ratio. Notably, the first

bin for central events on the near side is artificially low due to a poor fit to the dE
dx data. Also, the

proton and kaon peaks are at their minimum separation, in this pT bin, therefore making it difficult

to accurately extract the proton yield. The away side corrected ratio in this first bin is not shown

as the corrected value is less than −0.1.

The interesting result is in the final two bins of the away side jet ratio. It can be argued that the

increased p±/π± ratio in central collisions is due to the under estimation of the kaon yields thus

is artificial. This is probably the case for the 5.0 < pT < 5.5 GeV/c bin and may also be true for

the 5.5 < pT < 6.0 GeV/c bin. Yet the same argument cannot be used for the d + Au events where

there is also an increase in the K±/π± ratio in these two pT bins, which is evident in figure 6.20.
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Figure 6.19: Background corrected p±/π± ratio Au + Au and d + Au. In figure (a), the corrected
central Au + Au near side p±/π± ratio is compared to the near side uncorrected p±/π± ratios from
peripheral Au + Au and d + Au. In figure (b), the corrected central Au + Au away side p±/π± ratio
is compared to the away side uncorrected p±/π± ratios from peripheral Au + Au and d + Au.

What is further evidence that this increase in the p±/π± ratio is not artificial is that it is not seen

in the peripheral Au + Au data. In fact, when comparing the p+/p− ratios in figure 5.14 and 5.15,

there is not the increase in the p+/p− ratio in peripheral Au + Au as was seen in d + Au events,

which was the first motivation to suggest that leading baryons are being detected. Therefore it

cannot be ruled out that the increase in the away side jet p±/π± ratio in central Au + Au and d +

Au events are caused by different mechanisms.

Figure 6.20 compares the K±/π± ratios for the three system sizes. All three systems exhibit similar

ratios across the entire pT range. There are more fluctuations in the K±/π± ratio than the p±/π±

ratio. These fluctuations are probably caused because the kaon contribution is the most difficult to

accurately determine as the kaon dE
dx data overlaps with both the pion and proton data. The three

near side pT bins where the central Au + Au K±/π± ratio is lowest, correspond to the highest three

p±/π± ratio pT bins of the central Au + Au data. What can be established from figure 6.20 is that

the K±/π± ratio is higher on the away side than the near side jet. There is not conclusive evidence

that the K±/π± ratio changes with pT in central events, suggesting that the K±/π± ratio is pT
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Figure 6.20: Background corrected K±/π± ratio Au + Au and d + Au. In figure (a), the corrected
central Au + Au near side K±/π± ratio is compared to the near side uncorrected K±/π± ratios
from peripheral Au + Au and d + Au. In figure (b), the corrected central Au + Au away side
K±/π± ratio is compared to the away side uncorrected K±/π± ratios from peripheral Au + Au and
d + Au.

independent.

6.3.6 Simulated p + p hadron ratios.

To verify the results of section 6.3.5, the hadron ratios were compared to those created from Monte

Carlo generated p + p at
√

s = 200 GeV. The simulation package used was the Pythia 6.4 high

energy event generator. This software package uses the Lund String Model, described in section

3.2.1, to facilitate fragmentation after a hard scattering event. The simulated results were filtered

to obtain results that fell within the STAR experiment dimensions. One million p + p events were

selected that had a π0 as the highest pT particle with at least a pT greater than 6 GeV/c. Once the

events were selected, a two particle correlation was performed using the same pT bins used for the

experimental data. The hadron ratios were then calculated for the near and away side jets. As the

simulated p + p is a low multiplicity event and to be consistent with the treatment of the d + Au

data, no background correction was performed. The Pythia hadron ratios have been compared with

the experimental hadron ratios in figures 6.21 and 6.22, which are the p±/π± and K±/π± ratios

respectively.
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Figure 6.21: Background corrected p±/π± ratio Au + Au and d + Au compared with Monte Carlo
p + p events. Figure (a) compares the p + p simulated near side p±/π± ratio with the near
side p±/π± ratios calculated from the central and peripheral Au + Au data and the d + Au data.
Figure (b) compares the p + p simulated away side p±/π± ratio with the away side p±/π± ratios
calculated from the central and peripheral Au + Au data and the d + Au data.

The Pythia simulated data agrees with two of the observations that were made in the experimental

data. Firstly that both the p±/π± and K±/π± ratios are independent of pT . The second confir-

mation is that the away side hadron ratios are larger than the near side. The Pythia data points sit

lower than the d + Au and, at the lower end of the pT range, the peripheral Au + Au points. The

indication here is that there remains a contribution from the background which was not subtracted

due to a poor fit caused by fewer statistics in the background region. As the hadron ratios are inde-

pendent of pT in the Pythia data, there is no indication of a trigger bias that increases the p±/π±

ratio above pT = 5.5 GeV/c on the away side jet. As the Pythia data used only π0 triggers, that

leaves the possibility that γ triggers cause this increase in the p±/π± ratio assuming that the ratio

is not artificially elevated by a poor fit.
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Figure 6.22: Background corrected K±/π± ratio Au + Au and d + Au compared with Monte
Carlo p + p events. Figure (a) compares the p + p simulated near side K±/π± ratio with the near
side K±/π± ratios calculated from the central and peripheral Au + Au data and the d + Au data.
Figure (b) compares the p + p simulated away side K±/π± ratio with the away side K±/π± ratios
calculated from the central and peripheral Au + Au data and the d + Au data.

6.4 Identified Hadron Ratios From Identified γ Triggered ∆φ

Correlations

The π0 produces the largest background to direct photons in the st-gamma data. The symmetric

decay of π0s into two photons, where the two photons have very similar momentum and have a

small opening angle, is the most prominent source of neutral triggers.

6.4.1 Direct photon identification

Once a neutral trigger has been found, it must then be identified using data from the barrel elec-

tromagnetic calorimeter shower max detector. As pT ∼ 8 GeV/c, the angular separation between

the two photons at the barrel electromagnetic calorimeter face is typically smaller than the tower

size. As there are two photons showering within the tower, a π0 shower is generally broader than

those produced from a single photon. The single direct photon is the desired trigger that can be

used to identify γ-jet events. A transverse shower shape analysis, using the barrel electromagnetic
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calorimeter shower maximum detector, will be used to discriminate between direct photons and

photons from the decay of high pT π0. To quantify the γ/π0 discriminating power of the shower

maximum detector, simulated direct photons and π0s where embedded into actual Au + Au colli-

sion data [114]. The shower shape analysis was then implemented to see how effective the analysis

technique was at discriminating between direct photons and π0s.

The identified simulated particles are shown in figure 6.23. The transverse shower analysis looks

at how the total energy of the particle is distributed radially from the centre of the shower in the

shower maximum detector. The ratio Etotal/∑i eir1.5
i , where ei is the energy of a shower maximum

detector strip and ri is the radius of the hit from the centre of the shower, is expected to be small

for dual photon showers as the shower should be larger and the energy distribution less centralised

given that there are effectively two showers overlapping. In the simulation, equal numbers of direct

photons and π0s were used therefore figure 6.23 does not represent a true physical interpretation

of actual data. In the actual st-gamma data the γ/π0 ratio is expected to be less than unity, which

decreases the ability of this particular shower analysis to identify direct photons. In order to obtain

a γ rich sample, only those triggers with Etotal/∑i eir1.5
i between 0.25 and 6 were selected.

In addition to the shower analysis another factor can be used to improve the γ/π0 discrimination.

As the shower radius from two photons is generally larger than a single photon, the dual photon

shower is more likely to fall across two towers in the barrel electromagnetic calorimeter. By

comparing the energy of the highest energy tower with the highest energy neighbour tower such

that, α = (E1−E2)/(E1 +E2), where E1 is the energy of the highest energy tower and E2 is the

energy of the highest energy neighbour tower, a second dimension is produced on which to identify

direct photons. It is expected that α would be close to unity for the majority of direct photons while

the full range in α is probable for π0s. To isolate a γ rich sample, a cut on α was performed where

only triggers with α greater than 0.6 were sampled.

The method for identifying γ triggers using the shower maximum detector was outlined in section

6.4.1. By using the shower maximum detector shower data, single photon trigger candidates should

be identifiable. The two parameters required to isolate single photon triggers are α = (E1 - E2)/(E1

+ E2), where E1 is the energy of the highest energy tower in the event and E2 is the second highest
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Figure 6.23: Identified direct photons and π0 from Au + Au events at
√

sNN = 200 GeV embedded
with simulated direct photons and π0 [114].

energy tower that is adjacent to the highest energy tower, and the total.

The energy parameters required to calculate α are compared in figure 6.24(a). The requirements

for points to be selected were that they were the highest energy point in the event and that they

had a total energy greater than 6 GeV. A point is a reconstructed particle detected using the shower

maximum detector of the electromagnetic calorimeter. The energy in each shower maximum de-

tector strip associated with the point is called a hit. A point may be reconstructed across a number

of towers if a particle showers close to tower boundaries.

The biases introduced by the st-gamma level 2 trigger are easily identified. Firstly, there is a

disjoining of the distribution where the trigger requirement of one tower registering an energy 5.75

GeV or greater. What can also be determined is that the tower that caused the level 2 trigger to fire,

is not necessarily the highest energy point in the event. The data points where E1 is below 5 GeV

is where these high energy points can be found that most fall across tower boundaries depositing

similar quantities of energy in each tower.

It is important to remember that two or three towers can make up one point. Therefore it is not
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(a) (b)

Figure 6.24: Comparison between the the two highest energy towers where the total point energy
greater than 6 GeV. Figure (a) compares the energy of the two highest energy towers in each point
trigger. Figure (b) reveals the α distribution of the point triggers

(a) (b)

Figure 6.25: Energy weighted strip position from centre of trigger point. The φ strips are shown
in figure (a) and η strips are shown in figure (b). The positions are shown as a function of azimuth
and pseudorapidity from the point centre.

necessary for E1+E2 to be greater than 6 GeV. The few events found in the bottom left hand

corner are most likely caused by points where the third tower was corrupted and not included in

the data set however the point energy stored in the data retained the corrupt tower data. α is shown

in figure 6.24(b) and reveals that the distribution is heavily skewed to points that have deposited

the majority of energy in a single tower.

To analyse the shower maximum detector shower data, the hits on the shower maximum detector

η and φ strips need to be matched to calculate the distance from the point centre. The coordinates

of each strip indicate the centre of the strip and not where the hit actually occurred. Therefore, in

order to identify one hit, data from both sets of strips are required. Figure 6.25 displays the energy

weighted ∆φ∆η distribution of η and φ strip positions with respect to the point coordinates. The
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(a) (b)

Figure 6.26: Figure (a) shows the distribution of the point energy on the shower maximum detector
from point centre. Figure (b) shows the total point energy to the sum of radius weighted hit energy
ratio for each point trigger.

energy weighting emphasises how the energy is also focused at the centre of the point. As a

reminder, each tower is 0.05 wide in both η and φ thus a strip can be a maximum of a single tower

away from the point coordinates.

Once the hits have been identified on the η and φ strips the radius, from the centre of the point,

can be calculated and compared to the hit energy. Each tower is roughly 10 cm in diameter and

what is shown in figure 6.26(a) is that the hits are mainly well within this diameter. There appears

to be two peaks in the distribution, where the smaller peak at 5 GeV is a consequence of the level

2 trigger. The other peak appears to be the second closest hit associated with the point. This

observation implies that the majority of the energy is deposited in a single hit, with secondary hits

contributing a much smaller proportion of the energy.

Figure 6.26(b) is the experimental equivalent of the simulated data shown in figure 6.23. The

shape of the curve, when compared the the simulated data, indicates that there are contributions

from both dual photon (π0) and single photon (direct γ) triggers as neither of the simulated curves

describes the experimental data. However, the distribution suggests that the triggers are dominated

by π0 mesons.

By combining α with the shower shape energy weighted analysis, a zone that is rich in γ triggers on

the two dimensional plot can be selected as shown in figure 6.27. The zone corresponds to where

the peak in the simulated γ triggers was found and also to points where the energy in highest energy
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Figure 6.27: γ trigger identification method using α and the total energy to sum of radius weighted
hit energy ratio. The black square indicates the region where the majority of the single photon
showers are expected to be found.

tower is much greater than the energy in the second tower.

6.4.2 Jet hadron ratios determined from γ - charged hadron correlations

Having selected triggers from the γ rich zone of figure 6.27, two particle correlations were per-

formed to produce the three ∆φ regions required to calculate the jet hadron ratios. The correlations

in figure 6.28 were created using the γ rich trigger set. Apart from a smaller number of tracks,

there does not appear to be a great difference between the γ rich trigger data and the unidentified

neutral trigger data. This is not surprising when the fact that 70% of all the triggers fall under the

γ rich selection criteria. For a true γ - jet event, there should not be any associated particles, above

the background on the near side as photons do not fragment into a jet-like cone of particles.

The simulated data in figure 6.23 used a 1:1 ratio of γs and π0s. The estimated γ/π0 ratio from

figure 3.13 using the current trigger energy of 6 GeV would be closer to 0.25. The conclusion from

the γ isolation analysis must therefore be that the st-gamma data set is dominated by π0 at 6 GeV.

Even if it is assumed that the selection criteria for γ triggers removed only π0 triggers, the γ rich

sample would only have a maximum of 36% γ triggers. The sample will remain named gamma
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Figure 6.28: Identified γ trigger correlations with unidentified charged tracks from central Au +
Au events. From (a) to (f) the associated pT is increasing in 0.5 GeV/c intervals from 3-3.5 GeV/c
to 5.5-6 GeV/c. The red, green and blue markers indicate the near side jet, away side jet and
background regions in azimuth respectively.

rich, not to indicate high purity, but to distinguish between the data set where all neutral triggers

were considered and the data set where the γ selection cut was performed.

The dE
dx data were analysed for the γ rich sample of triggers using the method developed for the

central Au + Au data. The results from the γ rich sample from central events were compared

to the previously calculated results from section 6.3.5 for peripheral Au + Au and d + Au. Even

though only a 30% loss of statistics was sustained, the fits were evidently not as successful as those

performed with the full neutral trigger data. Figure 6.29(b) and figure 6.29(a) show the uncorrected

p±/π± and K±/π± ratios respectively.

In both figures there appears to be less distinction between the three regions than the calculation

performed with the full data. The background regions have not been fit accurately in the final two

bins making a background correction in these bins obsolete. There is however no rise in the p±/π±

on the away side of the γ rich data in these last two bins that cannot be explained simply by a dip in

the K±/π±. This would seem to contradict the suggestion that γ-jet events were causing the peak

seen in figure 6.19. The background corrected K±/π± and p±/π± ratios are shown in figures
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(a) (b)

Figure 6.29: Figure (a) reveals the p±/π± ratios for the near side jet, away side jet and background
regions of ∆φ , without the background correction, using γ rich central Au + Au event selection.
Figure (b) reveals the K±/π± ratios for the near side jet , away side jet and background regions of
∆φ , without the background correction, using γ rich central Au + Au event selection.
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6.30(a) and 6.30(b) yet unfortunately, due to large errors and fluctiations, no clear conclusions can

be drawn from them.
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(a)

(b)

Figure 6.30: Background corrected K±/π± and p±/π± ratios using γ rich central Au + Au event
selection. Each figure shows the near side jet on the left and the away side jet on the right with the
K±/π± ratios shown in figure (a) and the p±/π± ratios shown in figure (b).
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Chapter 7

INTERPRETATION AND OUTLOOK

7.1 Discussion of Results

The goal of this analysis was to search for evidence of possible jet modification in the presence of a

QGP via the study of jet particle spectra. In summary, the analysis has not been able to demonstrate

that such modification occurs when hard probes interact with the QGP.

The main result from the overall analysis is that the corrected hadron ratios for the three system

sizes, using the unidentified neutral triggers data, compared well with the simulated p + p events.

Although a single photon trigger identification method was tested, it was unable to produce con-

clusive results when the dE
dx data was analysed. A summary of the results from chapter 6 are given

below:

• In Au + Au collisions, the ratio of the away side jet yield to the near side jet yield is roughly

twice as large in peripheral Au + Au than in central Au + Au indicating that a larger attenu-

ation, by interacting with the medium, is experienced in central Au + Au. In both cases the

ratio of the yields was found to be independent of pT .

• In Au + Au collisions, the p±/π± ratio is highest in the uncorrelated background and the

away side jet p±/π± ratio is larger than the p±/π± ratio in the near side jet. The back-

ground p±/π± ratio reveals a pT dependence in central Au + Au consistent with the baryon

enhancement observed in the intermediate pT region (2-5 GeV/c). This is not observed in
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the jet spectra.

• In Au + Au collisions, the K±/π± ratio was found to be pT independent and was larger in

the away side jet than the near side jet.

• In d + Au collisions, the p±/π± ratio and K±/π± ratio showed the same ordering as Au +

Au collisions where the away side ratios were found to be higher than the near side ratios.

• In d + Au collisions, the p±/π± ratio and K±/π± ratio where found to be pT independent

in the background and jet spectra.

• The background corrected near and away side jet p±/π± ratios showed no pT dependence

in any of the colliding systems. This was verified using simulated p + p data.

The analysis provides evidence that two particle correlations are a simple yet effective way of

extracting information about the particle composition of jets. The track density study has shown,

in Au + Au events, that the background ∆φ regions contain particles created from soft processes

(steep slope) while the jet regions particles have a significantly flatter pT distribution, which is to

be expected for hadrons produced by fragmentation.

Though developing the methodology used for analysing the dE
dx relativistic rise data was challeng-

ing , the resulting fits produced hadron ratios trends and values that agreed with simulated p + p

data. The method developed was the first used at STAR not to use constraints on the hadron yields,

such as fixing the K± yield with the K0
Short , and fit the proton and kaon yields separately.

Overall, subject to sufficient statistics and detector performance, the analysis techniques used are

a powerful jet analysis tool.

As expected, the study of γ-jet events proved to be very difficult. Although the technique has been

shown to produce a near pure sample of π0s and a γ rich sample of triggers, the reduced statistics

destabilised the fit function when applied to the three regions in ∆φ [114].

126



7.1. DISCUSSION OF RESULTS

Figure 7.1: Identified photon trigger correlations with unidentified charged tracks from central
(0-10%) and peripheral (40-80%) Au + Au events at

√
sNN = 200 GeV. Figure (a), with red corre-

lations, use unidentified neutral triggers, while figure (b), with green correlations, compare corre-
lations with π0 and γ rich triggers [114].
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7.1.1 Interpretation of results

Figure 7.1(a) is a two particle correlation using neutral triggers and unidentified charged tracks for

central and peripheral Au + Au collisions at
√

sNN = 200 GeV. Figure 7.1(b) shows how the near

side yield per trigger is reduced when using the γ rich trigger sample when compared to the near

pure π0 sample. The away side yield per trigger is also slightly reduced when using γ triggers. The

reduced away side is caused by two processes: a reduced surface bias from using a photon trigger

and π0 triggered events containing a trigger with a higher initial parton energy.

If the second process is the dominant process, this supports the theory that the energy loss experi-

enced by high pT particles occurs at the parton level before fragmentation. This could lead to the

conclusion that the fragmentation process is unaffected by interactions with the medium, which is

supported by the results of this analysis.

There is a second scenario that would permit modification of the jet fragments whilst traversing

the medium without being detected in the two particle correlation. If a parton were to fragment,

the fragment may only remain correlated to the initial parton if it suffered no further interactions.

Once part of the medium, the fragment parton is subject to the colour rich medium and therefore is

likely to become thermalised with its surroundings. Even if the hadronisation process has changed

due to interactions with the medium, the initial fragmented parton is no longer correlated to the

parent parton and thus is not detected as part of the jet signal.

The theoretical study described in section 3.4.4 that predicted a shifting of the jet spectra to heavier

hadrons, caused by enhanced parton splitting, was able to track each jet fragment throughout the

fragmentation event [83]. The study also used LHC scale energy with jet energies an order of

magnitude higher than those accessible at RHIC. Therefore jet modification at RHIC energy may

occur at lower pT than the range analysed. By using high energy jets only, there is an increased

chance that any jet fragments that interacted with the medium may retain some correlation to the

jet axis. However pushing the trigger energy threshold higher would have significantly reduced the

available statistics in this analysis.
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7.1.2 Further observations

There has been extensive study to learn how the spatial features of a jet are effected by the medium

produced in Au + Au collisions. One prominent piece of evidence for jet modification is a broad-

ening of the near side jet peak along pseudorapidity, in hadron triggered two particle correlations

in central Au + Au, known as the ridge. There are many theories as to what causes the ridge seen

in figure 7.2(a), for example splash back from a quenched jet [115], linked to the anisotropic flow

experienced in the event [116], or caused by a parton cascade that broadens with the longitudi-

nal expansion of the medium [117]. This analysis was seen as an opportunity to strengthen the

argument that the ridge is caused by the away side jet if the γ jet data produced a ridge.

Figure 7.2(a) shows a typical jet plus ridge image from a ∆φ∆η correlation situated at ∆φ = 0 in the

η plane. There is no away side peak as jets are not back-to-back in ∆η due to the initial scattering

partons having varying longitudinal momentum. The correlation was exclusively between charged

tracks where the trigger pT was between 3-6 GeV/c and the associated pT was greater than 2 GeV/c

but less than that of the trigger. Figure 7.2(b) is a two particle correlation from d + Au events that

uses the same trigger and associated track pT cuts as in figure 7.2(a).

There is no broadening of the near side jet peak along pseudorapidity in d + Au as no medium is

expected to be created. Figure 7.2(c) was created using the st-gamma data from central Au + Au

collisions and used a trigger ET greater than 6 GeV with an associated charged track pT between

3− 3.5 GeV/c . The ∆φ∆η correlation from the st-gamma data strikes a far greater resemblance

to the correlation from d + Au. There is no sign of the ridge in the st-gamma data where previous

studies have shown that with these trigger and associated parameters the ridge is still visible [107].
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(a)

(b)

(c)

Figure 7.2: Comparison between, (a)∆φ∆η charged-charged correlation in central Au + Au colli-
sions, where trigger pT between 3-6 GeV/c and associated pT between 2 and the trigger pT , with
(b) the same correlation except performed for d + Au collisions, and (c) barrel electromagnetic
calorimeter triggered neutral-charged correlations in central Au + Au collisions, where trigger ET
is greater than 6 GeV and associated pT is between 3−3.5 GeV/c .
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Figure 7.3: Reconstructed dijet from a single central Au + Au event [118]. The jet consists of both
charged track momentum and neutral energy deposited in the STAR BEMC.

7.2 Outlook for Jet Studies in Heavy Ion Collisions

7.2.1 Recent jet identification studies in Au + Au collisions

Two particle correlations are not the only tool being used to identify jets in heavy ion collisions. Jet

reconstruction algorithms have been developed to reconstruct jets in a high multiplicity environ-

ment such as a central Au + Au collisions [118]. If jets can be successfully reconstructed and have

the background contribution removed, using algorithms on an event by event basis, they would not

suffer the same geometric biases as those seen in two particle correlations, which are dominated

by relatively low energy jets that have had little interaction with the medium and then fragment

into a few higher pT particles [72]. Cone algorithms are not new to jet finding and have been used

since the early 1980s yet they have until now only been used in leptonic or hadron collisions not

nuclear collisions.

The algorithm looks for jet ”seeds” in the event with a minimum energy of 4.6 GeV. A jet cone

with a radius of 0.4 in the η−φ plane is placed around the seed and the energy of all the particles
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Figure 7.4: 1/β vs. momentum for pions, kaons and (anti-)protons from the STAR TOF [109].

within the cone are summed to give a raw jet energy. The average energy of two unseeded cones is

used to estimate the background energy that is then subtracted on an event by event basis for each

seeded cone. In summary, jet reconstruction is feasible in heavy ion collisions and the initial jet

yield results have matched reasonably well with Nbinary scaled p + p yields using the seeded cone

algorithm, given the relatively large systematic errors [118].

7.2.2 Time of flight STAR upgrade

A limitation of the dE
dx data is that it cannot be used to identify charged hadrons between momentum

1.2 - 3.0 GeV/c. A Time of Flight (TOF) detector with full azimuth coverage was 70% complete

in 2009 and is now complete for the 2010 run [119]. The TOF extends the particle identification

range for protons up to a momentum of 3.0 GeV/c and separates kaons from pions up till 1.6 GeV/c

as shown in figure 7.4. The addition of a full azimuth coverage TOF will allow for an analysis of

the identified particle spectra created in heavy ion collisions at RHIC over a large pT range.
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7.2.3 Proposed Improved jet spectra analysis

In the previous two sections, sections 7.2.1 and 7.2.2, two improvements to the analysis performed

in this thesis were described. By combining the jet reconstruction algorithms with the jet spectra

analysis, a more conclusive jet study could be performed. Utilising the TOF would increase the

associated hadron pT range that could be analysed. The observed increase in the p±/π± ratio in

central Au + Au collisions ranges from pT = 1.5 - 6 GeV/c. The entire increased range could be

analysed providing a comprehensive study of the mid and low pT jet spectra.

7.3 Final Outlook

When RHIC operations began in 2000, an era of hard probes in heavy ion collisions began. During

the last ten years a large collaborative effort has been engaged in studying and understanding the

strong interaction in a QCD medium. This analysis is a small part of that large collaborative effort

to provide experimental evidence to complement theoretical models that are looking to quantify

the critical parameters of the medium created at RHIC.

The experiment is not complete yet and there are several new avenues to explore at RHIC and future

heavy ion experiments. The commissioning of the LHC at CERN in 2009 announced the arrival of

a new frontier for heavy ion physics. With an anticipated
√

sNN= 5500 GeV, the experiments at the

LHC are well suited for hard probe analysis. The hadron identification method developed in this

analysis may prove to be a useful technique for jet studies at ALICE. The ALICE experiment is

the only purpose built heavy ions experiment at the LHC and benefits from a barrel time projection

chamber. ALICE will be able to track charged particles with a momentum from 100 MeV/c to 100

GeV/c with a momentum resolution ranging from 1-10% [120]. The ALICE experiment represents

an ideal tool for jet studies at the LHC.

There are new challenges to be faced at the LHC. At
√

sNN = 5500 GeV a Pb +Pb collision is

likely to yield several hard scattering events per collision due to the increased hard scattering cross

section plus access to higher energy jets. Jet reconstruction may be more difficult when several
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dijets are present in a single event. In addition, a higher average Q2 may lead to a less strongly

coupled QGP that would have implications for energy loss models applied to LHC collisions. As

the LHC will cross a new boundary in energy, there could be new and exciting physics that have

yet to be observed in any high energy experiment.
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