An Improved Event Plane Detector for the STAR Experiment

Justin Ewigleben, Lehigh University
For the STAR Collaboration

Justin Ewigleben, APS April 2017 Meeting 1/29/2017
An Improved Event Plane Detector for the STAR Experiment

Justin Ewigleben, Lehigh University
For the STAR Collaboration
Outline

• Motivation
• Design/Construction
• Timeline
• Summary
Beam Energy Scan

Key measurements and goals
Location of critical point and first order phase transition

Centrality, Event Plane and Triggering
• Replacement for Beam-Beam Counter (BBC)
• Made of scintillator plastic
• Two, 1.8m diameter wheels of 12 super sectors each
• Each super sector contains 31 optically isolated channels (744 total)
• Optical fiber coupled to Silicon Photomultipliers (SiPMs)
• Read out by STAR electronics
EPD vs BBC

372 Tiles Each

36 Tiles Each
(Only inner 18 used)

Justin Ewigleben, APS April 2017 Meeting 1/29/2017
EPD, BBC coverage

BBC: $|\eta| = 3.3 - 5 \Rightarrow \theta = 0.8^\circ - 4.2^\circ$

EPD: $|\eta| = 2.1 - 5.1 \Rightarrow \theta = 0.7^\circ - 14^\circ$
Machining and Optical Isolation

CNC milling
- high volume water/oil for cooling, debris
Super Sector Construction

- Connected to 5 meters of clear fiber with 3D-printed custom connectors
- Super Sector will be wrapped in Tyvek and 2 layers of black paper (light tight)

Embedded 32-channel fiber-to-fiber connector

Embedded WLS fibers

Clear fibers

A test tile
Front WLS grooves
Clear fiber bundle meets readout electronics

EPD FSC spacer block

EPD SiPM card: 16, 25-µm SiPMs

FEE Box

FEE Card
Prototype run 2016
Prototype Results

Avg. photons per MIP

Systematics as expected
larger tiles \rightarrow fewer photons

“Twin tiles” display identical Minimum Ionizing Particle (MIP) response

The only difference is higher multi-hit probability in tile 17, which was closer to the beam

Justin Ewigeleben, APS April 2017 Meeting 1/29/2017
Timeline

• 2015
 – Pre-prototype run in STAR
 – Prototype construction

• 2016
 – Prototype run in STAR (behind BBC)
 – Analysis of 2016 data
 – Install 1/8 EPD in STAR behind BBC

• 2017
 – Commissioning run in STAR of 1/8 EPD behind BBC
 – completion of EPD (24 supersectors) & installation at STAR

• 2018 and beyond – EPD as trigger and physics detector
Quarter Wheel in place at STAR
Summary

• EPD is an important upgrade for many measurements, including those for BES-II
• Increased spatial and timing resolution over BBC, as well as pseudorapidity coverage
• Will allow centrality determination without use of TPC to reduce auto-correlation effects
• Design is finalized, first quarter wheel in place for 2017
• Data coming soon!
• Final 7/8 to be completed over 2017 to be installed by end of year, with an extra 4 super sectors to be constructed as a failsafe
Supersector production

1. mill isolation grooves (1.65 mm wide) on back ½-way (6 mm deep)
2. TiO$_2$ + epoxy mixture for isolation grooves, mill the front
 • remaining isolation grooves
 • WLS fiber grooves (3.5mm), with ramps
3. epoxy FFC with WLS fibers
4. optical glue WLS in sigma grooves and central channel
5. TiO$_2$ + epoxy mixture for front isolation grooves
6. polish edges, touch-up
7. wrap
8. bench tests
Design

2 Wheels, each composed of 12 supersectors

Each supersector: 31 optically-isolated tiles
 - 1.2-cm-thick scintillator (Eljen EJ-200)
 - 3 turns of WLS fiber (Kuraray Y-11, 1 mmD)
 - (3 turns ~doubles light output rel. 1 turn)
 - $R_{in} = 4.5$ cm, $R_{out} = 90$ cm, $z_{mount} = 375$ cm

Each of $12 \times 31 \times 2 = 744$ channels
 - optical signal transported 5.5 m on clear fiber (Kuraray 1.15 mmD BJ round)
 - coupled to SiPM (Hamamatsu S13360-1325PE)
 - 25-μm pixels \rightarrow 1600+ illuminated pixels
 - read out by STAR FEEs/QTs, similar FPS

Custom-built connector components
 - 3D-printed