

Direct virtual photon production in Au+Au collision at $\sqrt{s_{NN}}$ = 27 and 54.4 GeV

Xianwen Bao (包贤文)

for the STAR collaboration

Shandong University

Supported in part by the

Why choose direct virtual photon?

- Do not participate in strong interaction
- Probe energy density, effective temperature, collective motion of QGP

What affect direct virtual photon yield?

- Emission time
- Volume $\propto dN_{ch}/d\eta$
- Temperature and total chemical potential

Comput. Phys. Commun., 199:61-85, 2016

Au+Au collision at RHIC		
$\sqrt{s_{ m NN}}$ (GeV)	27	54.4
μ_B (MeV)	156	85
Use events (minimum bias)	~250M	~430M

STAR

Direct virtual photon extraction

Dielectron signal and cocktail simulation

- Dielectron signal is consistent with cocktail at π^0 mass region
- η/π^0 are parametrized using Tsallis blast-wave function and constrained by world wide data at high p_T

Internal conversion method: two-component fit

$$\frac{d^2 N_{ee}}{dM} = r * f_{dir} + (1 - r) * f_{cocktail} \quad r = \frac{\gamma^{direct}}{\gamma^{inclusive}}$$

Direct virtual photon p_T spectrum

First direct virtual photon measurements in Au+Au collisions at $\sqrt{s_{NN}}$ = 27, 54.4 GeV

Call for theoretical calculations on thermal photons

27/09/24

Xianwen Bao @ Hard Probes 2024

The scaling behavior in $dN_{\gamma_{dir}}/dy\, vs.\; dN_{ch}/d\eta$

STAR Collabration, *Phys.Lett.B* 770 (2017) 451-45 PHENIX Collaboration, *Phys.Rev.Lett.* 123 (2019) 022301 ALICE Collaboration, *arXiv:* 2308.16704

The scaling behavior in $dN_{\gamma_{dir}}/dy\, vs.\; dN_{ch}/d\eta$

- > New measurements of $dN_{\gamma_{dir}}/dy$ at STAR
- Yield dominated by thermal photon
- > Strong $dN_{ch}/d\eta$ dependence

STAR Collabration, *Phys.Lett.B* 770 (2017) 451-45 PHENIX Collaboration, *Phys.Rev.Lett.* 123 (2019) 022301 ALICE Collaboration, *arXiv:* 2308.16704

The scaling behavior in $dN_{\gamma_{dir}}/dy\, vs.\; dN_{ch}/d\eta$

- > New measurements of $dN_{\gamma_{dir}}/dy$ at STAR
- Yield dominated by thermal photon
- > Strong $dN_{ch}/d\eta$ dependence
- > The yields at $\sqrt{s_{\text{NN}}}$ = 27, 54.4, 200 GeV

measured by STAR follow a common scaling,

with $\alpha = 1.457 \pm 0.071$

STAR Collabration, *Phys.Lett.B* 770 (2017) 451-45 PHENIX Collaboration, *Phys.Rev.Lett.* 123 (2019) 022301 ALICE Collaboration, *arXiv:* 2308.16704

Summary

- > New measurements of direct virtual photons in Au+Au collisions $\sqrt[3]{s_{NN}}$ at $\sqrt{s_{NN}}$ = **27, 54.4** GeV, firstly extended to BES-II region
- > The yields at $\sqrt{s_{NN}}$ = 27, 54.4, 200 GeV measured by STAR
 - follow a common scaling
 - Strong $dN_{ch}/d\eta$ dependence
 - Scaling power $\alpha = 1.457 \pm 0.071$

Outlook

Extend the study to the lower energies

 $\sqrt{s_{\rm NN}} = 11.5, 14.6, 19.6 \, {\rm GeV}$

Summary Thanks for attention!

- New measurements of direct virtual photons in Au+Au collisions $\sqrt[5]{3}$ at $\sqrt{s_{NN}} = 27$, 54.4 GeV, firstly extended to BES-II region
- > The yields at $\sqrt{s_{NN}}$ = 27, 54.4, 200 GeV measured by STAR

follow a common scaling

- Strong $dN_{ch}/d\eta$ dependence
- Scaling power $\alpha = 1.457 \pm 0.071$

Outlook

Extend the study to the lower energies

 $\sqrt{s_{\rm NN}} = 11.5, 14.6, 19.6 \, {\rm GeV}$

